

Tomáš Karger

The Weight
of the Intangible
Knowledge Networks
in Free and Open Source
Software Development

Reviewed by: doc. Mgr. Dopita Miroslav, Ph.D., Dr hab. Piotr Chomczyński

Published by Palacký University Olomouc, Faculty of Arts
Edition SocioPolis, Vol. 1
Edition managed by: Doc. PhDr. Tomáš Lebeda, Ph.D.

Making and publishing of this book was enabled by financial support granted
in 2016 by Ministry of Education, Youth and Sports, CZE,
under the Institutional Development Plan to Faculty of Arts,
Palacký University Olomouc. / Zpracování a vydání publikace bylo umožněno
díky finanční podpoře, udělené roku 2016 Ministerstvem školství, mládeže
a tělovýchovy ČR v rámci Institucionálního rozvojového plánu,
Filozofické fakultě Univerzity Palackého v Olomouci.

This work is licensed under a Creative Commons BY-NC-ND. See the license
conditions at https://creativecommons.org/licenses/by/4.0/.

Unauthorized use of this work amounts to copyright infringement
and may result in civil, administrative or criminal liability.

1st edition
© Tomáš Karger, 2016
© Univerzita Palackého v Olomouci, 2016
ISBN 978-80-87895-67-2

https://creativecommons.org/licenses/by/4.0/

3Contents

OBSAH

Contents

List of Abbreviations	 4
Preface	 5

Introduction	 7

1 From UNIX to Technological Utopia	 17

1.1 Free and Open Source Software	 17

1.2 Utopian Virtualism	 31

2 Software and Knowledge	 39

2.1 Tools and Design Artifacts in Software Development	 39

2.2 The Role of Knowledge in Software Development	 43

3 Network Shaped Knowledge Distribution	 49

3.1 Cognitive Networks	 49

3.2 Actor-Networks	 52

4 Practices of a FOSS project	 61

4.1 Code allocation	 61

4.2 Knowledge Channeling	 67

4.3 Debugging	 81

4.4 Revision Tracking	 88

5 Mediation and Resources Inside a FOSS Project	 99

5.1 Meanings of Mediation	 99

5.1.1 Composition	 99

5.1.2 Translation and Delegation	 109

5.1.3 Black-boxing	 123

5.2 Resources Driving Development	 128

5.2.1 Volunteer Effort	 128

5.2.2 Formal Organizations	 135

6 Conclusion	 145

References	 156

Index	 167

Summary	 169

OBSAH

4List of Abbreviations

List of Abbreviations

API (Application Programming Interface)
BSD (Berkeley Software Distribution)
CLA (Contributor License Agreement)
FOSS (Free and Open Source Software)
FSF (Free Software Foundation)
GDB (GNU Project Debugger)
GES (Gstreamer Editing Services)
GNU (GNU is not UNIX)
GPL (General Public License)
GTK (GIMP Toolkit)
GUADEC (Gnome User and Developer Conference)
HTML (Hyper-Text Markup Language)
IP (Internet Protocol)
IRC (Internet Relay Chat)
KVM (Kernel-based Virtual Machine)
LGPL (Lesser General Public License)
LOC (Line of Code)
OSI (Open Source Initiative)
POSIX (Portable Operating System Interface)
QEMU (Quick Emulator)

5Preface

OBSAH

Preface

This book is a reworked and refined version of my dissertation thesis,
which I was able to successfully defend in the fall of 2015. The text con-
cludes with essentially the same points, although they are now better
articulated thanks to the suggestions of two reviewers. The text is also
structured differently to provide better orientation for the reader. In ad-
dition, many small modifications were made to the text as a result of re-
reading and re-considering some of its parts.

The original topic of my dissertation research was quite a different
one. It should have been a theoretical work about the concept of self-
organization (or emergence, spontaneous order) and its use in the social
sciences. Having a technological background in my education, I was
fascinated by the language of Cybernetics and Systems Theory (Niklas
Luhmann’s theory in particular) and by the images of spontaneously
emerging order. The reader can still trace these influences in several
footnotes appearing throughout the work. It was only during the first
year of my Ph.D. studies that I realized that I could put my education to
use in a different way. I could do participant observation in a field where
not many sociologists or anthropologists would feel at home. This went
hand in hand with the fact that I found two fields to be repeatedly listed
as empirical examples of self-organization: science and free and open
source software development. The former has been researched for quite
some time now with a substantial body of literature on record. But the
latter has only about a decade and a half on its record with a significantly
smaller body of literature. This was an area where I could make a good
contribution. Moreover, since high school (where I studied electrotech-
nical engineering), I have been a user interested in the latest develop-
ments in free and open source software, which provided me with a rough
picture of the field’s most basic dividing lines.

All of this led to my decision to officially change the topic of my dis-
sertation, leaving me with a lot to catch up on but also with the advan-
tage of my prior everyday knowledge, which of course had to undergo
a thorough reflection. Eventually, my findings led me to a rather critical
position regarding the images associated with self-organization as I un-
covered their limited relevance and the utopic valence they carry. There
is some irony in the fact that one of the points of this work is to show

OBSAH

6Preface

the limitations of the images which initially fascinated me and drew me
to the topic. But I take this as a sign that I did not succumb to my initial
preconceptions. How much this work will transform knowledge in the
relevant fields of study remains to be seen. However, a different transfor-
mation has already taken place, that of its author.

I would like to thank my colleagues and mentors for inspiration,
advice and guidance. In particular, I would like to express my gratitude
to Miroslav Dopita, Wolfgang Hofkirchner, Piotr Chomczyńksi, Jan
Kalenda, Dagmar Lorenz-Meyer, Dušan Lužný, Albert Müller, Libora
Oates-Indruchová and Gerlinda Šmausová. I am also grateful to my
friends and members of my family for their support and patience.

7Introduction

OBSAH

Introduction

For some, software development is an activity obscure enough that it
should nicely connect to the anthropological tradition of studying exotic
cultures shrouded in mystery. Others may find it as boring as reading
through telephone books – a different kind of information infrastruc-
ture. However, reading and writing source code (which is the primary
activity behind software development) has been recently pronounced to
be a new form of literacy by many influential individuals.1 The atmos-
phere induced by this assumption has spread considerably. Some soft-
ware developers criticize it2 while many officials endorse it – to name the
most prominent example, Barack Obama became the first US president
to write a line of source code.3 Without trying to position myself in the
discussion about the legitimacy of the literacy status of programming,
I want to point out that the spread and significance of activities associ-
ated with software development have risen considerably from the times
when computers could be afforded by few and the knowledge necessary
to operate them was held by even fewer, to the times when GitHub, a web
service designed to share source code, is among the top 100 most visited
sites on the Internet.4

This development went hand-in-hand with another process, a shift in
which free and open source software (FOSS), as a movement or as a soft-
ware development methodology, established itself against the traditional
proprietary model. It suffices to reiterate the glaring difference between

1 See the Code.org initiative which revolves precisely around this assumption and is
supported by the likes of Bill Gates and Mark Zuckerberg.
2 Coding is not the new literacy. Blog post of a well-known software developer relayed by
Slashdot, a popular user curated news site. Published: 2015-01-26. Accessed: 2015-04-
30. Available at: http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-
literacy/.
3 President Obama Is the First President to Write a Line of Code. Article published by The
White House Blog. Published: 2014-12-10. Accessed: 2015-04-22. Available at: https://
www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-
code.
4 How Github Conquered Google, Microsoft, and Everyone Else. An article in the Wired
magazine. Published: 2015-03-12. Accessed: 2015-04-21. Available at: http://www.wired.
com/2015/03/github-conquered-google-microsoft-everyone-else/.

http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-code
https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-code
https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-code
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/
http://www.wired.com/2015/03/github-conquered-google-microsoft-everyone-else/

OBSAH

8Introduction

the 1970s and the present day, pointing at the scale of involvement of sig-
nificant players of the technological industry in open source software.5
However, there is a more illustrative way of showing the gradual estab-
lishment of free and open source software.

In 2001, the Microsoft CEO Steve Ballmer famously stated that “Linux
is a cancer that attaches itself in an intellectual property sense to every-
thing it touches.”6 For a long time, Microsoft was seen as the arch enemy
of free and open source software. This relationship occasionally culmi-
nated in statements like Ballmer’s or, from the other side of the barri-
cade, pokes by Linus Torvalds, the originator of the Linux kernel: “Really,
I’m not out to destroy Microsoft. That will just be a completely uninten-
tional side effect.”7 Such was the atmosphere in 2003. One decade later, in
October 2014, a Microsoft CEO Satya Nadella says that “Microsoft loves
Linux.”8 In February 2015, Microsoft releases its important .NET frame-
work on GitHub under an open source license.9 And in April 2015, Mark
Russinovich, one of Microsoft’s top engineers publicly states that open
sourcing Windows, the company’s core product, is “definitely possible.”10

These statements mark a shift during which the open source ap-
proach to software development rose from a challenger to an estab-
lished position. Microsoft, a company that has embodied the success of

5 Among top contributors to the development of Linux Kernel, the hallmark of open
source software, there are companies such as Intel, Samsung, IBM, or Google (Corbet,
Kroah-Hartman, & McPherson, 2015, p. 11).
6 Microsoft CEO takes lunch break with the Sun-Times. Interview published by Chicago
Sun Times. Published: 2001-06-01. Accessed: 2015-04-22. Available at: http://www.
linuxtoday.com/infrastructure/2001060100920OPMS.
7 The Way We Live Now: Questions for Linus Torvalds. Interview published by The New
York Times Magazine. Published: 2003-09-28. Accessed: 2015-04-22. Available at: http://
www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-
linus-torvalds-the-sharer.html.
8 Why Microsoft CEO Satya Nadella Loves What Steve Ballmer Once Despised. Article
published by Wired magazine. Published: 2014-10-21. Accessed: 2015-04-22. Available
at: http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-
despised/.
9 .NET Core is Open Source. Blog post on the Microsoft Developer Network website
(msdn.com). Published: 2014-11-12. Accessed: 2015-04-22. Available at: http://blogs.
msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx.
10 Microsoft: An Open Source Windows Is ‘Definitely Possible’. Article published by Wired
magazine. Published: 2015-04-03. Accessed: 2015-04-22. Available at: http://www.wired.
com/2015/04/microsoft-open-source-windows-definitely-possible/.

http://www.linuxtoday.com/infrastructure/2001060100920OPMS
http://www.linuxtoday.com/infrastructure/2001060100920OPMS
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-the-sharer.html
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-the-sharer.html
http://www.nytimes.com/2003/09/28/magazine/the-way-we-live-now-9-28-03-questions-for-linus-torvalds-the-sharer.html
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://www.wired.com/2015/04/microsoft-open-source-windows-definitely-possible/
http://www.wired.com/2015/04/microsoft-open-source-windows-definitely-possible/

9Introduction

OBSAH

the proprietary approach to software development, is the one who has
to catch up, as Nadella openly admits.11 Indeed, free and open source
software became ubiquitous in the world of digital technology, in large
part because other companies like Google learned to build their business
models around this type of software development.12 The shift was also
recognized in the world of Linux distributions, where Ubuntu, one of the
most popular distributions, had a longstanding bug in its issue tracking
database (filed in 2004, it was actually the first bug in the database), which
was labeled “Microsoft has a majority market share.”13 The bug served as
a mission statement – that Ubuntu was intended to provide an alternative
which could possibly end the dominance. Eventually, the role played by
Ubuntu in the shift was not direct, but the shift took place nevertheless.
Mark Shuttleworth, the founder of Ubuntu, closed the bug in May 2013,
noting that Microsoft no longer had a dominant market share in comput-
ing platforms.

With this introduction, I do not intend to argue that free and open
source software development is superior to other development models
or that it is the future of computing. My intention was merely to show
the relevance of this topic – that while the practices and cultural aspects
of free and open source software may seem unusual, they do not involve
just a few hobbyists at the periphery of the computing industry. It is
now heavily involved in developing and maintaining the information
infrastructure that became so important during the last decades. The
subculture became heavily intertwined with current capitalist practices,
changing the nature of both in the process. And it is the aim of this work
to describe free and open source software development precisely in this
context.

Another type of context this work is involved with is that of cyber-
space. A predominant part of my research takes place online. This means
that the information flows necessary to gather data and interact with

11 Why Microsoft CEO Satya Nadella Loves What Steve Ballmer Once Despised. Article
published by Wired magazine. Published: 2014-10-21. Accessed: 2015-04-22. Available
at: http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-
despised/.
12 For example, Google’s Android, currently the most popular mobile operating sys-
tem, is based on Linux.
13 Microsoft has a majority market share. Bug in Ubuntu’s issue tracker at launchpad.com.
Published: 2004-08-20. Accessed: 2015-04-23. Available at: https://bugs.launchpad.net/
ubuntu/+bug/1.

http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
http://www.wired.com/2014/10/microsoft-ceo-satya-nadella-loves-steve-ballmer-despised/
https://bugs.launchpad.net/ubuntu/+bug/1
https://bugs.launchpad.net/ubuntu/+bug/1

OBSAH

10Introduction

participants are carried through a technical infrastructure known as the
Internet. I will attempt to follow the methodological implications briefly
in the following paragraphs.

According to Bruno Latour, this digital environment greatly increases
the materiality of networks, making them less virtual than before (Latour,
2010, p. 8). This claim seems to be at odds with how the online environ-
ment is typically characterized – as bringing virtuality into a world that
has been up to that point material. Drawing upon Latour’s work, I see the
digital as a result of an actual network of ties that had to be put together.14
In the end, digital information is nothing else than organized values of
voltage differences. But one does not need to go that far. It is sufficient
to consider the actual effort that goes into creating a digital artifact –
the mobilization of actual people spending their actual time, connected
through an actual infrastructure. Therefore, in this text, digital is seen not
as virtual, it is seen as actual, that is, material, graspable and traceable.

The Internet infrastructure is often characterized as making time and
space irrelevant, but such claims hold only in a certain sense and need
to be carefully specified. The time dimension is displaced by the ability
of digital information to persist. This can be illustrated by the opposition
of synchronous and asynchronous communication, which is elaborated
for example by Lorenzo Cantoni and Stefano Tardini (Cantoni & Tardini,
2006, p. 44). Tools belonging to the former type of communication are
not designed for the later retrieval of information and because of that
both parties have to be present at the same time.15 On the other hand,
tools belonging to the latter type of communication create a persistent
trace that can be retrieved at a later time and in doing so enable both
parties to sustain the communication even when they are not simultane-
ously present.16

Second, space is to some extent rendered irrelevant by the infrastruc-
ture’s ability to transfer information in real time between nodes of the
network. However, this does not mean that the space dimension of the

14 An alternative would be to look at the Internet as a distinct kind of space where
interaction is made possible, as for example Anette Markham (2004, p. 99) notes. But
that would correspond to a different kind of social topology (regions), than which is
used through this text (networks). For a more detailed elaboration of the difference,
see the work of Annemarie Mol and John Law (1994).
15 A classic example of this type of communication tool is chat.
16 A classic example of this type of communication tool is email.

11Introduction

OBSAH

world becomes wholly irrelevant. The problem known as the digital divide
refers to the fact that infrastructure is far from being universally present
throughout the world (Norris, 2001). If present, infrastructure provides
varying levels of connectivity. As a result, there is a bandwidth limitation
which often favors low bandwidth media (such as text) for transferring
information (Cantoni & Tardini, 2006, p. 44). Although higher bandwidth
media (such as pictures, sound, video) are ever more common, these play
only a supplemental role in practices like software development as these
practices predate the spread of digital high bandwidth media and thus
are fully attuned to the nature of digital text.

With regard to spatiality, Cantoni and Tardini also speak about the
“new syntax” related to the word ‘here’. This word can now have several
distinct meanings: it can mean the place where the body of the user is
physically present; it can designate the online space the user is active
in; and it can also denote the desktop space of a computer (Cantoni &
Tardini, 2006, p. 59). As if this was not enough, Anette Markham notes
that users are typically present in more than one online space at a time
(Markham, 2004, p. 105), making the traditional notion of presence
limited to only one place problematic.17

This issue shows its full extent once we realize that the data gathering
techniques of ethnography are traditionally very closely related to pres-
ence in the field (i.e. at a certain place). The approach to data gathering
must be adjusted appropriately and this is where the multi-sited version
of ethnography comes into play. This approach has been developed since
1995, when the defining article by George Marcus was published. In it,
Marcus defined multi-sited ethnography as a form of research that traces
a certain phenomenon through various settings (Marcus, 1995, p. 669).
According to Mark Falzon, this approach rests on the assumption that
space is socially produced and on a subsequent realization that ethnog-
raphers could also produce a space of their own (Falzon, 2012, p. 4).

However, the conceptualization of space in this approach is far from
unproblematic. Joanna Cook, James Laidlaw and Jonathan Mair suggest
distinguishing between space (geographical area), place (cultural ter-
ritory) and field (cultural territory in a geographical area appropriated
for research) (Cook, Laidlaw, & Mair, 2009, p. 60). According to these
authors, the turn to multi-sited ethnography implied an acknowledgment

17 The multiplicity of communication sites that are maintained by varying types of
collaboration is also noted by Christine Hine (Hine, 2000, p. 115).

OBSAH

12Introduction

that cultural territories spanned multiple geographical areas or were part
of networks that could not be examined from one geographical area only.
In order for the field to correspond to a cultural territory, it has to involve
multiple geographical areas (Cook et al., 2009, p. 63).

But Cook, Laidlaw and Mair went beyond what the first generation
of researchers promoting multi-sited ethnography proposed and sug-
gested an approach called “un-sited ethnography” (Cook et al., 2009,
p. 69).18 They made one more distinction by insisting that whereas spaces
or places are two (or more) dimensional areas, ethnographic field is only
a collection of one-dimensional lines connecting points of observa-
tion. These lines may intersect borders found in spaces or places and
in doing so, provide useful data for making comparisons (Cook et al.,
2009, pp. 63–64). The decisions on what to include in the network-shaped
field should be made based on what the research is focused on and what
the research questions are (Cook et al., 2009, p. 65). In this regard, it is
possible to draw upon Marcus who laid out several options of what can
be traced through the various settings. These options include following
certain people, things, metaphors, narratives, biographies or conflicts
(Marcus, 1995, pp. 106–110).

Within this research project, the un-sited approach is useful for
drawing together various sites and platforms that are mobilized during
the studied instance of software development. There is a chat channel for
synchronous communication, a database for issue tracking, a repository
for hosting source code, a website as a persistent reference point for in-
formation and there are also events at which developers from a broader
community come together. What ties these sites together is the role they
play in development of a particular piece of software and the fact that
there are frequent references and links among them.

The interaction nodes present on online platforms provide the sub-
strate for my points of observation. My field is quite literally constituted
of links between these points. Within this field, I employed participant
observation in order to have direct experience with tools, artifacts, plat-
forms and infrastructures employed in knowledge building while also
experiencing the whole process of establishing a work environment,
learning how the tools behave and coordinating work on contributions.

18 Similarly, David Hakken proposes a non-site bound or trans-sited approach to grasp
cyberspace research that takes advantage of the hypertext nature of the web (Hakken,
1999, p. 59).

13Introduction

OBSAH

Contributing to the project19 also has an ethical dimension of giving back
to the project, whose maintainers agreed with my fieldwork.

My entrance into the field happened in several stages. The first direct
contact I made with the field was at the GNOME Users and Developers
European Conference, which is an annual event (in 2013 it was hosted in
Brno, Czech Republic) focused on development of the GNOME desktop
environment. GNOME is a wide project aggregating many smaller
projects underneath its label. Therefore, my presence at the event had
a twofold purpose: to try to pre-select a smaller project where I could
carry out participant observation and to familiarize myself with the en-
vironment by being present at the conference itself, as well as the hack-
fests (events dedicated to aggregating participants to work together on
a selected problem) that took place after the conference officially ended.

In November 2013, through monitoring the GNOME blog aggregator
Planet GNOME, I discovered that a project called Pitivi needed someone
to write user documentation. It turned out that it was a rather small
project aimed at developing video editing software and that it met all of
the above listed criteria. I decided to contact the author of the blog post
(who was one of the maintainers of the project) using the project’s chat
channel so that our conversation would happen somewhere that anyone
associated with the project might be present, in the sense of being able
to read it or participate in it. In this contact, I made it clear that I would
be contributing to the project as part of my research and I spent some
more time in the channel discussing the aims of my research project with
several core developers who expressed interest.

From that point on, I became a curious newcomer who required help
and explanations at times, and who also tried to learn and give back by
doing something that would be of use to the project. Taken together,
my participant observation was spread over a time frame of around half
a year, starting on the first day of contact in the chat channel. However,
my passive presence in the project – everyday monitoring of the chat
channel where all of the non-private synchronous communication takes
place and browsing through the sites holding records of asynchronous
communication – spanned about a year, until the end of 2014. Part of
the interaction with the software developers later on revolved around
reading some of the material I wrote (an article discussing my prelimi-

19 I assumed the role of documentation writer, which means that I edited and ex-
tended the user manual of the developed software.

OBSAH

14Introduction

nary results). To conclude this introduction, let me turn to the structure
of the present work and its argument.

In the following paragraphs, I briefly summarize the content of indi-
vidual chapters. In the first chapter (From UNIX to Technological Utopia),
I give an overview of research on free and open source software relevant
for this work. I start with a brief historical note to clarify the origins and
cultural significance of the phenomenon. I then proceed to elaborate
on the characteristics of the phenomenon, including common norms or
values, demographics, status hierarchies, organizational structures, so-
cialization processes, and its relationship to the capitalist mode of pro-
duction. I note that in some works, the phenomenon is conceptualized
as a new form of organizing production and is associated with positive
anticipations, sometimes even utopian visions. I argue that these an-
ticipations are part of a broader discourse centered around the poten-
tial of digital technologies and cyberspace. The claims made within the
discourse rely on an assumption that knowledge has replaced capital,
labor and natural resources as central productive forces. Informed by its
critique, I formulate the general question of this work, which is, how is
knowledge dynamized within the networks of FOSS projects?

In the second chapter (Software and Knowledge), I attempt to relate
software and programming to knowledge conceptualized in accordance
with some of the basic sociological works on the topic. Most importantly,
I elaborate upon the role artifacts (tools or prototypes) play in software
development, and introduce the distinction between information and
knowledge. Then I proceed to formulate the problem of decontextualiza-
tion – loss of knowledge or meaning during information transfer. A theo-
retical solution to this problem can be found in Alfred Schütz’s work in
the form of idealizations allowing for reciprocity of perspectives. The
chapter concludes with an attempt to contextualize Schütz’s idealiza-
tions in a digital environment by relating them to the role of artifacts and
to the distinction between information and knowledge elaborated earlier
in the chapter.

In the third chapter (Network Shaped Knowledge Distribution), I draw
upon the theory of distributed cognition and the Actor-Network Theory
to clarify the cognitive relevance of artifacts and to introduce the infra-
language I use for further analysis. The section revolves around three
topical areas: (1) the role of objects external to the human mind (or body)
in creating cognitive accomplishments; (2) the concept of network; (3)
the concept of mediation with its four meanings of translation, composi-

15Introduction

OBSAH

tion, delegation and black-boxing. After an elaboration of these topics,
the research question is reformulated in terms of the infra-language in-
troduced in the chapter.

The fourth chapter (Practices of a FOSS project) contains detailed de-
scriptions of the four most significant practices I encountered during my
fieldwork. Each of these practices is tied to a particular element of infra-
structure that the studied project is using. (1) Code allocation is affected
by an overall architecture of the developed software in which licensing
plays a considerable role. (2) Knowledge channeling is tied to various
means of communication used in the studied project such as chat chan-
nels, blogs, or wiki pages. Here, the self-documenting characteristic of
FOSS projects is described. (3) Debugging consists of investigating and
explicating issues in the developed software. It relies heavily on the use of
programs that are able to observe the internals of running software and
on databases that are used to keep records of issues. (4) Revision tracking
is mainly concerned with producing and recording texts that capture dif-
ferences which were introduced into source code with its modification.
It is tied to version control systems, which function as a bridge between
private and public spaces. All of these descriptions are supported and
illustrated by my own experience, by observed communication among
other participants and by excerpts of documents I analyzed.

In the fifth chapter (Mediation and Resources Inside a FOSS Project)
I relate my descriptions to the infra-language elaborated in chapter two
to take the first step toward their generalization. The specific focus is
on relating the descriptions to the four meanings of mediation (transla-
tion, composition, delegation and black-boxing), which are also used to
structure the text further into subsections. The second part of the chapter
focuses on examination of resource flows within FOSS projects. It at-
tempts to throw light on the puzzling problem of how FOSS projects are
able to sustain themselves given that the costs associated with software
development are notoriously high. The subsection describes various
strategies the projects use to either avert the costs associated with soft-
ware development or to gain resources of their own. The subsection con-
cludes with an examination of the involvement of private companies in
strategically positioned FOSS projects.

In the last chapter (Conclusion), I bring together all the important
points I made throughout the text. I argue that the problem of decontex-
tualization is diminished by using standard tools, licenses and commonly
structured design artifacts (such as prototypes). These standard entities

OBSAH

16Introduction

allow for conventionalization of information appropriation and control
of situational circumstances to create conditions suitable for producing
and applying knowledge. I also note that the amount of decontextualized
information surrounding software development constitutes a barrier
that is very difficult and costly to overcome. Therefore, I claim that even
though the formal licensing terms under which the software is published
purposefully suspend the rights traditionally associated with ownership
and ascribe them to anyone, in practice these rights are exercised only
by a small group of actors who are enabled to do so by holding specific
types of knowledge. This clarification of the close relationship between
knowledge and (practical) ownership is one of the two major points this
work attempts to make. At face value, this point seems to confirm the
assumption of a utopian vision, mentioned in the introductory chapter,
that knowledge becomes the sole source of production. However, as
the second major point of this work, I attempt to explicate limits to the
images of free and frictionless association resulting from the visions for-
mulated with regard to digital technologies and cyberspace. I attempt to
do so by showing that knowledge does not immaterially operate upon
itself, while drawing upon my descriptions to demonstrate that there is
still a material production system surrounding the mind.

17From UNIX to Technological Utopia 17From UNIX to Technological Utopia

1
From UNIX to Technological Utopia

1.1 Free and Open Source Software
Free and open source software development began to be systematically
researched at the turn of the millennium. According to Christopher
Kelty, who was studying it consistently during the first decade after the
turn, it can be defined as:

software whose source code (the code humans read and write) is made
freely available (generally on the Internet, without restriction) through the
use of a special copyright license. The software is copyrighted by its creator
and then distributed under one of several standard licenses that allow the
licensee to use the software, to distribute it, to copy it, and even to modify
it for his/her own purposes. Some licenses require that if the software is re-
distributed, any changes need to be released under the same license used
to offer it in the first place (this is variously referred to as reciprocal, recur-
sive, or viral). The most famous of these licenses is the GNU General Public
License created by the Free Software Foundation. (Kelty, 2004, p. 501)

Many of the characteristics that Kelty describes in his definition were
inherited from the practices established around UNIX, a very success-
ful operating system from the 1970s. Its success is attributed to the fact
that it could run on affordable computers, that its source code was dis-
tributed together with its binaries and that its license permitted modifi-
cations to source code and even sharing of those modifications among

OBSAH

18From UNIX to Technological Utopia

licensees (Söderberg, 2008, p. 15). Retrospectively, we20 can see that the
main characteristics of the development model central to free and open
source software was already present in practices related to the predeces-
sor (direct or indirect) of many of today’s widespread operating systems
including a variation of BSDs (Berkley Software Distribution), Linux-
based distributions or Mac OS X.

However, in the 1980s the AT&T company attempted to enforce own-
ership rights over UNIX which, according to Söderberg, resulted in the
informal programmer community established around UNIX becoming
skeptical of the existing intellectual property regime (Söderberg, 2008,
p. 19). This led Richard Stallman to found the Free Software Foundation
(FSF) in 1984, an organization dedicated to allowing computer users to
operate without proprietary programs. The break with the privatized
UNIX system is represented by the acronym GNU (GNU is Not UNIX),
which is used to label all software and licenses (for example, the GNU
Compiler Collection, or the GNU General Public License) that the FSF
produces. The endeavors of FSF included development of an operating
system kernel (called GNU Hurd) as a substitute for UNIX. However,
the work had been significantly delayed due to licensing issues with the
Mach microkernel, which was to be released by the Carnegie Mellon Uni-
versity under a suitable license and thus was proposed by Stallman to be
used as a basis for development.21

Another reaction to the privatization of UNIX came from research-
ers at the University of California, Berkeley who participated heavily in
UNIX development. They resorted to removing every line of code from
UNIX that AT&T claimed and replaced them with their own code. The
result is known as the Berkeley Software Distribution (BSD) and is still
actively developed in several versions. However, in the early 1990s, AT&T
sued UC Berkeley for infringement, which led to a trial that AT&T even-
tually lost, but which in the meantime drove developers away with the
fear that their work could end up being claimed by the company (Söder-
berg, 2008, p. 24). Instead, the developers started contributing to another
kernel project written from scratch by Linus Torvalds and licensed purely

20 In this text I employ one rule concerning the use of personal pronouns consistently:
I use “we” when I take into consideration the reader following my description or argu-
mentation; “I” is used in every other case, often indicating that I take responsibility for
particular decisions or the unfolding of the text in general.
21 Source: https://www.gnu.org/software/hurd/history.html.

https://www.gnu.org/software/hurd/history.html

19From UNIX to Technological Utopia

OBSAH

under the GNU General Public License (GPL). This project, today known
as Linux, established a strong position during the rest of the 1990s and
became (together with other successful projects such as the Apache web
server) the hallmark of the new software development model (Kelty, 2004,
p. 503). The conclusion that Johan Söderberg draws from this historical
development is that Linux succeeded “not because it was backed by the
highest concentration of capital, but to the contrary, because under the
GPL it had the purest absence of private property relations [emphasis original]”
(Söderberg, 2008, p. 24).

However, in spite of the success of several projects, free software
was predominantly perceived as hostile to private businesses, a result
of the value system developed by Stallman and the FSF, which consid-
ered free software a moral standard and was very critical of anyone using
or developing proprietary software. To capitalize on the success of free
software projects, Eric Raymond and Bruce Perens founded the Open
Source Initiative in 1998 to redefine the existing development model with
this new term. In doing so, they attempted to play down the moral and
political associations that free software was bundled with and instead
to emphasize the practical advantages of the development model (Kelty,
2004, p. 503).22,23 Since then, there has been a spread of business models
revolving around open source software.

22 At that time, this also meant going against a widely influential premise formulated
by Fred Brooks. In his book, The Mythical Man-Month, Brooks argued that “Cost does
indeed vary as the product of the number of men and the number of months. Progress
does not. Hence the man-month as a unit for measuring the size of a job is a danger-
ous and deceptive myth. It implies that men and months are interchangeable. Men and
months are interchangeable commodities only when a task can be partitioned among
many workers with no communication among them (…). This is true of reaping wheat
or picking cotton; it is not even approximately true of systems programming.” (Brooks,
1995, p. 16) From this argument, Brooks deduced the famous Brooks’s Law: “Adding
manpower to a late software project makes it later.” (Brooks, 1995, p. 25) After formu-
lating the premise, Brooks argued that, for teams of software developers, the only
organizational form which can assure efficiency and conceptual integrity is the one
modeled after surgical teams, where problem solving is reserved for one person while
everyone else provides necessary support (Brooks, 1995, p. 32). However, the FOSS
software development model is based on an exactly opposite model of organization,
involving volunteer association, work self-assignment and occasional contributions.
Therefore, at that time, the FOSS model existed as an unexplained alternative.
23 In this text I use the expression “free and open source software” (FOSS) to denote
both branches of the movement represented by the Free Software Foundation and the
Open Source Initiative respectively. I can allow myself to amalgamate the branches

OBSAH

20From UNIX to Technological Utopia

But the significance of FOSS goes beyond successful software de-
velopment projects. Broadly speaking, Kelty grasps free software as
a movement with several defining characteristics: sharing source code,
emphasizing and conceptualizing openness and using copyleft licenses
and collaborative practices (Kelty, 2008, p. 14). Within those loose bound-
aries, there are varying practices that can be deemed conventional or
experimental. This leads Kelty to postulate a system of thresholds dis-
covered by collective experimentation within the movement. However,
sometimes the experiments consist in attempts to apply conventional
FOSS practices to other areas of production. In these cases, Kelty speaks
of “modulations” of FOSS practices (Kelty, 2008, p. 16). As Kelty notes,
FOSS values and practices have spread to or inspired other realms of
life in recent years (Kelty, 2008, p. 2). These include hardware design and
manufacture (Open Hardware24), science (Open Access25), media (Crea-
tive Commons26), knowledge management (Wikipedia27), visual arts (the
Processing language28) and even ecological engineering (Open Source
Ecology29). What all these initiatives have in common is, according to
Kelty, that they use Internet as a key infrastructural element while at-
tempting to reorient knowledge and power (Kelty, 2008, p. 16). Taken to-
gether, this historical development exemplifies the “cultural significance
of free software” (which is the subtitle of Kelty’s book).

Inside the FOSS movement, the predominant personal identity is that
of a hacker.30 The corresponding verb “hacking” designates work that, as
Pekka Himanen claims, is tied to a specific ethic. Himanen describes the

because most of the time I am not concerned with their value differences (and where
I am, I differentiate between them), but with practices associated with them, which, as
Kelty notes, are common: “for all the ideological distinctions at the level of discourse,
they are doing exactly the same thing at the level of practice” (Kelty, 2008, p. 14).
24 See http://www.ohwr.org.
25 See http://www.doaj.org.
26 See http://www.creativecommons.org.
27 See http://www.wikipedia.org.
28 See http://www.processing.org.
29 See http://www.opensourceecology.org.
30 In this context, the term “hacker” has a positive connotation and denotes someone
who cleverly takes advantage of a formal or automated system. However, this does not
necessarily involve criminal activities. To differentiate themselves, the free and open
source software hackers use the term cracking or crackers to denote those who per-
form hacking with criminal intent.

http://www.ohwr.org/
http://www.doaj.org/
http://www.creativecommons.org/
http://www.wikipedia.org/
http://www.processing.org/
http://www.opensourceecology.org/

21From UNIX to Technological Utopia

OBSAH

hacker work ethic as being primarily based on passion and opposed to
what has been, with reference to Max Weber’s work, called the Protestant
work ethic (Himanen, Castells, & Torvalds, 2001, p. 6). Work is seen by
hackers as intrinsically interesting, inspiring, and joyous. On the other
hand, the Protestant ethic perceives work as a calling – work is a duty
which is an end in itself and must be done as well as possible.

This rendering of the hacker work ethic resonates with several later
studies which emphasize the key role of intrinsic motivation for volun-
teer involvement. For example, one of the findings in a study by Sonali
Shah is that while initial contributions to software development projects
often serve to satisfy a need for improved functionality of the software,
many of those who stay involved do so because they enjoy the work (Shah,
2006, p. 1010). Correspondingly, Stephanie Freeman claims that although
the life situations of contributors vary widely, the commonality is that
the boundary between work and hobby is blurred in their involvement
(Freeman, 2007, p. 73). Furthermore, Margit Osterloh and Sandra Rota
(Osterloh & Rota, 2004, pp. 291–292) identify two institutional precondi-
tions for establishing intrinsic motivation within FOSS projects: enabled
self-determination and conditional cooperation (contributing when
others are too). Osterloh and Rota further claim that the intrinsic motiva-
tion of project members translates into the project’s trustworthiness for
those outside it of it (Osterloh & Rota, 2004, p. 296).31

Yet motivation is not the only determinant of participation in FOSS
projects. The demographic characteristics of a typical contributor, as
summarized by Söderberg, show that FOSS projects are populated
mainly by “middle-class males living in the West” (Söderberg, 2008,
p. 28).32 According to the author, this situation has its origins in the early

31 However, it must also be noted that there are limitations associated with intrinsic
motivation. While trying to explain the lack of a significant relationship between
intrinsic motivation and participation levels, Roberts et al. point out that the enjoy-
ment of work may sometimes come at the expense of its outcome, or that intrinsi-
cally motivated individuals tend to be more self-directed, which could potentially
cause problems in aligning their goals to those of their collaborators (Roberts, Hann,
& Slaughter, 2006, p. 996).
32 A more detailed, though older, summary is offered by Holtgrewe, who draws on
surveys by Ghosh et al. (2002) and Lakhani et al. (2002): “developers are youngish with
an average age below 30 years. They are almost exclusively male (98–99%). 60–70% are
university or college graduates, 20–30% are students. Around 80% are IT profession-
als, which leaves roughly a fifth of amateurs in the sense that they have nothing to do
with the IT industry” (Holtgrewe, 2004, p. 10). These basic characteristics are consist-

OBSAH

22From UNIX to Technological Utopia

days of computing when access to computers was highly restricted.
However, these restrictions have been considerably lowered as the price
of computers has declined. Currently, Söderberg sees the main cost in
the amounts of leisure time that need to be spent in order to contribute
to a project (Söderberg, 2008, p. 28); this resource is distributed along dif-
ferent lines than wealth and that, as a result, privileges aggregates such as
students or the unemployed.

It is perhaps not surprising that there is a significant gender imbal-
ance in FOSS projects. But this, according to Söderberg, cannot be ex-
plained by an active struggle for economic resources, as many of the
projects are predominantly volunteer oriented.33 On the other hand,
there is not much preference, across FOSS projects, to actively seek and
support underrepresented groups. The projects are declaratively and
practically open, but the emphasis placed on meritocracy translates into
a widespread opinion that it is up to the underrepresented groups to
exert effort and join the activities (Söderberg, 2008, p. 29).34

This leads us back to the topic of values forming the hacker ethic.
As such, the hacker ethic can be summarized as adhering to seven basic
values (Himanen et al., 2001, pp. 139–141):

1.	 Passion – hackers work on tasks intrinsically interesting for them
and enjoy their realization.

2.	 Freedom – hackers organize their life around creative work and
other passions, they oppose routine and monotonous work.

3.	 Social worth – hackers aim to create something valuable and be
recognized for that by their peers.

ent with the latest survey carried out in 2015 by the Stack Overflow web portal (Stack
Overflow, 2015), which is focused on knowledge sharing among software developers or
system administrators. Furthermore, the dominance of western countries in contribu-
tions to FOSS development is also supported by Yuri Takhteyev and Andrew Hilts
(Takhteyev & Hilts, 2010, p. 6), who studied the geographical distribution of users of
GitHub, the largest provider of services for sharing source code.
33 Again, a more detailed description can be found in Holtgrewe (2004, p. 10): “Be-
tween half and 80% of FS/OS developers are volunteers. For the majority, involvement
is limited to the extent of a more or less time-consuming hobby. Roughly two thirds of
developers spend less than 10 hours per week on FS/OS development.”
34 Although there are exceptions, such as the Outreachy program originating from the
activities that took place already in 2006 under the patronage of the GNOME Founda-
tion. The project’s website can be found at: https://www.gnome.org/outreachy/

https://www.gnome.org/outreachy/

23From UNIX to Technological Utopia

OBSAH

4.	 Openness – hackers allow further usage, development or testing of
their creations by anyone.

5.	 Activity – hackers prefer active pursuit of passion over passive
receptiveness.

6.	 Caring – hackers perceive concern for others as an end in itself.
7.	 Creativity – hackers respect the imaginative use of abilities and

providing new and original contributions.

Some of these values can be clustered into more general areas of conduct.
According to Himanen (2001, p. 140), the values of passion and freedom
constitute the hacker work ethic, the values of social worth and openness
form the hacker money ethic and the values of activity and caring serve
as a basis for the hacker network ethic, or “nethic”, while creativity, the
seventh value, permeates all of these areas. With reference to concrete ac-
tivities, Katherine Stewart and Sanjay Gosain (K. Stewart & Gosain, 2006,
p. 303) found four types of values present in FOSS communities: collab-
orative values (helping, sharing, cooperation), individual values (learn-
ing, technical knowledge, reputation), process values (bug fixing, code
quality, status attainment) and freedom values (free information, free
software). Based on their research, the authors claim that in most cases,
these values have a positive impact on trust and communication quality
(K. Stewart & Gosain, 2006, p. 303), which means that they are functional
with regard to community building and technical performance.

Overall, the hacker ethic seems to imply the abolition of the distinc-
tion between work and leisure. Meaning cannot arise from duty bound
work or unproductive leisure, it can be found only in the intrinsic
value of a passionately performed activity (Himanen et al., 2001, p. 151).
These values are, of course, not uniformly applicable to the movement
as a whole so that the actions of every member would be generally de-
termined by them. There are significant differences, most notably for
example between the adherents of free software or open source software.
But these values indicate the overall spirit the movement as such repre-
sents.

We can see that the norms are predominantly concerned with regulat-
ing the process of software development. This is indicative of what Kelty
emphasizes by calling free software a recursive public, that is, a public
“that is vitally concerned with the material and practical maintenance
and modification of the technical, legal, practical, and conceptual means
of its own existence as a public; it is … capable of speaking to existing

OBSAH

24From UNIX to Technological Utopia

forms of power through the production of actually existing alternatives”
(Kelty, 2008, p. 3). In other words, this type of public is able to develop
and deploy its own infrastructure, be it technical, legal, or conceptual.
Because of this, it can enjoy a significant amount of independence.

In FOSS, technical recursivity is achieved primarily by the preference
to use FOSS software as tools. Therefore, FOSS projects build on existing
FOSS software to develop new programs. As Matt Ratto notes, in terms
of FOSS development projects, there is a difference between software
as a compiled tool and software as an object of work (Ratto, 2007, p. 96).
Furthermore, considering the distinction between mutable and immuta-
ble mobiles, introduced to the FOSS studies by Mary Darking and Edgar
Whitley (Darking & Whitley, 2007, p. 24), the developed software (object
of work) and the used software (tools) differ in the nature of their pres-
ence in FOSS projects. While software tools could be characterized as
immutable mobiles which maintain their shape despite the configuration
of relations they enter, the developed software could be characterized
as a mutable mobile – an unstable, situation dependent, or even “fluid”
object. This is so because all the information and knowledge necessary
to meddle with the developed software is actually and readily available
in a given project, while for software used as a tool (and developed at
another place) this is available only as a potentiality.

The distinction between the hacker and Protestant ethic also seems
to be historically embedded in different spheres of life. Himanen (2001,
p. 6) argues that the historical precursor of the hacker work ethic was
the work ethic employed in the antique academia, with its intrinsic in-
terest in knowledge, the search for inspiration and the joy of discovery.
The Protestant work ethic is supposed to have its precursor in a work
ethic present in medieval monasteries and its emphasis on the fulfillment
of duties. The Protestant work ethic, as shown by Weber, was eventually
embraced by capitalism, which stripped it off the religious context and
preserved the emphasis on duty fulfillment (Weber, 2001). As the hacker
work ethic is fundamentally different from the Protestant work ethic,
Himanen (2001, p. 12) argues that its existence and spread poses a chal-
lenge for present-day capitalism.

This is why the hacker work ethic seems to be significant and worth-
while, but it still needs to be elaborated in more detail. First, it is a work
ethic so it must be distinguished from utopian images of a life without
doing anything. The hacker work ethic is characterized by a preference
for tasks that are found to be interesting, inspiring and for the comple-

25From UNIX to Technological Utopia

OBSAH

tion of which the hacker is even willing to go through less joyful stages
(Himanen et al., 2001, p. 19). Furthermore, the hacker ethic involves the
belief that the use and optimization of machines should lead to a less
routine and machinelike human life. There is an implied emphasis on
creativity, which cannot flourish under conditions of time pressure and
monotonous tasks. Work is seen as part of a continuously ongoing life
and workers are seen as multi-dimensional human beings. In this sense,
the hacker ethic also constitutes an image of a worthy life (Himanen et
al., 2001, p. 39).

As already noted, the hacker ethic emphasizes openness through in-
formation sharing (Himanen et al., 2001, p. 39). This goes together rather
well with what is considered the prevalent motivational force – peer rec-
ognition. Only when the results of one’s work are traceable and widely
accessible can peer recognition work. This characteristic has the po-
tential to collide in certain cases with the concept of ownership, which
forms the basis of capitalism. This issue is further explored by Gabriella
Coleman. She claims that hackers’ emphasis on making the results of
their work available not only to themselves, but also to anyone interested,
is evocative of Karl Marx’s critique of estranged labor (Coleman, 2013,
p. 13). However, hackers do not follow the line of reasoning in a radically
leftist critique of capitalism. As Coleman shows, they establish their cri-
tique by playing one aspect of liberalism against another, claiming that
source code should be associated with freedoms related to speech, not
with those related to private property (Coleman, 2013, p. 6). Hence, the
central value expressed by Coleman as “code is speech” (Coleman, 2009,
2013, p. 147). This is also reflected in a saying hackers developed to dis-
tinguish between the two kinds of freedom: “free as in speech/free as in
beer”. This saying emphasizes the differences between freedom related to
expression and freedom stemming from something being gratis (which is
seen as inferior to the former type of freedom).

Johan Söderberg goes as far as claiming that the hacker movement
is a part of a broader revolt against commodification of labor (Söder-
berg, 2008, p. 44) and a continuation of the labor struggle (Dafermos &
Söderberg, 2009). In recent years, software development contributed
significantly to de-skilling the workforce in many occupations. And
the routinization is also paradoxically starting to affect the professions
related to software development itself. However, Söderberg argues that
knowledge workers have a specific position in the struggle (Söderberg,
2008, p. 46). They can either engage in hacking, that is, using their skills

OBSAH

26From UNIX to Technological Utopia

to build viable alternatives, or resort to cracking – using their skills to
conduct actions of resistance that could be considered illegal. According
to Söderberg, this resistance cannot be undermined by de-skilling the
workforce – a strategy that could have been applied everywhere else. “At
this point, however, Taylorism runs into its own limits. There is no easy
way to deprive ‘knowledge workers’ of knowledge and still have them
working” (Söderberg, 2008, p. 46).35

However, the hacker ethic cannot be considered wholly anti-capitalist.
It does not oppose the idea of making profit; it opposes the idea of making
profit by constraining specific kinds of information. In fact, there is sig-
nificant involvement of private businesses in FOSS projects that are stra-
tegically positioned.36 In this regard, Joel West and Siobhán O’Mahony
distinguish between autonomous and sponsored communities. These
authors claim that licensing and access to source code are provided in
the same way by both types of communities. They differ, however, in that
the governance is more pluralistic in autonomous communities, while in
sponsored communities control exerted by the sponsor prevails. This is
outweighed by the assurance of continued existence – autonomous com-
munities that don’t attract any volunteers cease to exist. In sponsored
communities, core developers are usually employed by the sponsor,
which safeguards continuity (West & O’Mahony, 2008, pp. 14–15). On the
other hand, companies may benefit from involvement with a community
by extending their resource base, as Linus Dahlander and Mats Magnus-
son suggest in general terms (Dahlander & Magnusson, 2008, p. 638).

Moreover, by combining business and community involvement,
sponsored communities are placed at the intersection of formal and
informal economies. But in this case, informality is not associated with
downgraded labor, breaching a link that Manuel Castells made in one
of his older works (Castells & Portes, 1989, p. 26). Although it may share

35 A similar point is made by Kristi Sarheim Anthun, who notes that knowledge work-
ers, as the “owners of the now most important resource (knowledge) acquire power
and influence since knowledge cannot be replaced with capital” (Anthun, 2013, p. 17).
36 This is also consistent with a claim that Manuel Castells makes about the elementary
units of economic production. According to this author, individual companies as units
of production are being replaced by projects, in which companies collaborate to create
a product (Castells, 2000a, p. 11). It seems that FOSS projects, with their inhibition of
some individual property rights, create appropriate conditions for this type of collabo-
ration. This remark can be supported by the current state of large FOSS projects, such
as the Linux kernel, which often receive sponsorship from multiple companies.

27From UNIX to Technological Utopia

OBSAH

the status of being undeclared or invisible, which Bonnie Nardi and Yrjö
Engeström (1999) show is the case with much of the work in postindus-
trial society. In this sense, autonomous FOSS projects may represent
a specific kind of informal economy.

Correspondingly, some authors claim that FOSS projects are struc-
tured as a specific kind of symbolic economy. According to Magnus
Bergquist and Jan Ljungberg, the economy is based on gift giving
(Bergquist & Ljungberg, 2001, p. 312).37 Here, software developers are
seen as gift givers to those that accept the gifts – users. This constitutes
a relationship where software developers gain power by systematically
giving away the results of their work. The only way for users to even up
their position is to give back by contributing. But this is not only a matter
of decision. The presence of peer review for contributions means that the
current developers assess and select contributions to be used and there-
fore, in a sense, select users who will be allowed to give back (Bergquist
& Ljungberg, 2001, p. 314). However, as Bergquist and Ljungberrg point
out (2001, p. 314), this relationship only works when the parties share
a framework of meaning (e.g. the users know that the software they use
was developed by volunteers and appreciate it).

Focusing on the developer side of the relationship, we can find more
elaborate status hierarchies explored by Daniel Stewart. This author
claims that status is based on references that other members give and
that in FOSS communities, it is largely based on reciprocity and col-
laboration (D. Stewart, 2005, p. 834). In other words, developers tend to
give references for those they work with and also give references back
when they receive some. Furthermore, as Stewart argues, the references
form a self-reinforcing cycle, which means that the more references of
a sort a member receives, the smaller the probability of receiving refer-
ences that counter the previous ones (D. Stewart, 2005, p. 835). However,
the most interesting point made by Stewart is his identification of peer
evaluation as predominantly endogenous (D. Stewart, 2005, p. 838). This
means that status is derived mostly from the endorsement of work un-

37 Alternatively, one could construct a similar explanation along the lines of spend-
ing attention. The conceptualization of attention as a resource was already proposed
by Herbert Simon (Simon, 1971, p. 40) and the relation between attention economy
and the Internet was later discussed by Michael Goldhaber (M. Goldhaber, 2006;
M. H. Goldhaber, 1997) and Philippe Aigrain (Aigrain, 1997). However, the concept of
attention is too general and underspecified in the sociological and anthropological
traditions of thought and so it can’t be readily used.

OBSAH

28From UNIX to Technological Utopia

dertaken within the community, and external forces are not taken into
account (at least not directly).38 This makes the community embedded in
its own rules but also provides the foundations for its compatibility with
a broad range of organizations and worldviews.

Part of the hacker ethic is also its perception of authority. In this way,
the hacker ethic once again resembles the academic, because one of its
key components is that anyone can use, criticize or develop the objects
produced by other hackers (Himanen et al., 2001, p. 68).39 It is this model
of open development and self-correction that is perceived as desirable in
contrast with models that keep knowledge constrained and let authorities
set goals. However, this does not mean that the hacker work ethic asserts
the absence of any kind of structures (Himanen et al., 2001, p. 72). As we
have seen, there are structures, at least in terms of status hierarchies, but
browsing studies published during the last decade reveals more.

Siobhán O’Mahony and Fabrizio Ferraro studied the process of gov-
ernance establishment in the Debian Linux distribution. These authors
found out that in the long run, the community preferred leaders with
organizational competence over the ones whose competence was purely
technical (O’Mahony & Ferraro, 2007, p. 1100). This provides a correction
for the description of the status building process – status does not have
to be based only on an endorsement of technical work. Furthermore,
even though the community initially placed many checks on the power
of elected leaders, eventually, those that broadened their sphere of influ-
ence were preferred (O’Mahony & Ferraro, 2007, p. 1100).

With regard to power and influence, Didier Demaziére et al. distin-
guish between centralized control, which ensures consistent performance

38 This tendency can be observed also in other online constituted communities such as
Wikipedia, where restrictions are placed on original research and where the status of
its contributors (professional researchers, for example) is not taken into account (Luyt,
2011, p. 1063; Rosenzweig, 2006, p. 140).
39 In this sense, Eric Raymond, the author of the highly influential essay The Cathe-
dral and the Bazaar points out that the already mentioned Brooks’s Law (a well-known
premise among software developers implying that adding developers to a late software
project makes it later) needs to be balanced with the concept of egoless programming.
“Gerald Weinberg’s classic The Psychology Of Computer Programming supplied what,
in hindsight, we can see as a vital correction to Brooks. In his discussion of ‘egoless
programming’, Weinberg observed that in shops where developers are not territorial
about their code, and encourage other people to look for bugs and potential improve-
ments in it, improvement happens dramatically faster than elsewhere” (Raymond,
1999, p. 39).

29From UNIX to Technological Utopia

OBSAH

over time and serves as a guarantee that time invested by volunteers will
not be lost, and distributed regulation, where influence is distributed ac-
cording to the presence (number of contributions or amount of time in-
vested) of individuals in the area (Demazière, Horn, & Zune, 2007, p. 51).
These findings point to the fact that power and influence are dispersed
among individuals with high levels of involvement – a fact that is used by
the communities to label themselves as meritocratic.

However, as Nicolas Ducheneaut shows in his analysis inspired by
Bruno Latour, FOSS projects recede from the ideals of openness and
meritocracy in situations when newcomers are attempting to join and
influence a project. Ducheneaut identified a series of stages that a new-
comer goes through – from passive monitoring of development activities
to making substantial modifications to developed software.40 But as he
notes, most newcomers stop at the initial stages and very few of them
reach the advanced ones. Ducheneaut attributes this to several charac-
teristics of FOSS projects. According to this author, FOSS projects repre-
sent black-boxes for newcomers – they need to uncover the relationships
forming the project network in order to identify how they can interact
with it and where they could start with their contribution. Furthermore,
Ducheneaut claims that the network naturally resists change, which
means that a newcomer has to mobilize human and non-human allies in
order to insert himself into a position from which he can make a substan-
tial modification (Ducheneaut, 2005, pp. 353–355).

Such situations typically lead newcomers to perform what could be
called autonomous learning. In this process, newcomers make use of the
available sources of information – which in FOSS projects are abundant
and which, according to Andrea Hemetsberger and Christian Reinhardt,
enable re-experiencing rationales and past events. These authors argue
that the archived traces left after past interactions (for example in mailing
lists) combined with information sources specifically aimed at newcom-
ers (user or developer documentation) form a transactive memory that
can be explored independently of the actors that created it (Hemetsberger
& Reinhardt, 2006, pp. 195–199).41 This phenomenon is further supported

40 Drawing on Ducheneaut’s work, Israr Qureshi and Yulin Fang later developed
a model of four classes of “joiners” differentiated according to the volume of interac-
tion with core developers (Qureshi & Fang, 2010, p. 223).
41 In 2003, Gwendolyn Lee and Robert Cole had already pointed out that the reuse of
mailing list communication and peer review observation is at the heart of the knowl-

OBSAH

30From UNIX to Technological Utopia

by the self-documenting tendencies in the FOSS culture. Hackers usually
produce accounts (typically in the form of blog posts) of the learning
processes that they undergo. These records are publicly available so that
others can make use of them or develop them further. This leads to a con-
tinuous creation and re-creation of learning resources for any topic that
is deemed to be interesting or worthwhile. In this sense, the learning of
one individual can teach others.42

Similarly to learning, work in FOSS projects exhibits an emphasis on
autonomy. Kevin Crowston et al. found that self-assignment is the most
frequent type of work assignment in FOSS projects (Crowston, Li, Wei,
Eseryel, & Howison, 2007, p. 6). This finding is further supported by Gi-
ampaolo Garzarelli and Ricardo Fontanella, who additionally clarify that
self-assignment is made possible by the modular architecture of projects,
allowing for individuals to work in parallel (Garzarelli & Fontanella, 2011,
pp. 930–936). Keeping in mind that FOSS projects are often run by vol-
unteers, so that there is little or no leverage to enforce work assignment,
this should not come as a surprise. Overall, Crowston et al. character-
ize the FOSS projects as “self-organized” and compare the coordination
mechanisms to those identified by Karin Knorr-Cetina in high energy
physics (Crowston et al., 2007, p. 11).43 Athina Karatzogianni and George
Michaelides further characterize self-organized FOSS projects by noting
that they typically exhibit a two-tier (core and periphery) structure dif-
ferentiating maintainers from occasional contributors. The overall dis-
tribution of projects follows the power law (the frequency of an event

edge generating processes in Linux kernel development (Lee & Cole, 2003, p. 644).
42 Manuel Castells proposes to distinguish two types of workers in a network society –
generic labor and self-programmable labor. The key difference between them is that
unlike the former, the latter type of worker is able to process information in order to
adapt their qualification when new kinds of tasks emerge (Castells, 2000a, p. 12). In
other words, the difference between the worker types lies in the ability to learn, or
even learn autonomously (Castells, 2010a, p. 377). Given the emphasis placed by FOSS
developers on information sharing and autonomous learning, they seem to fit well into
the second category.
43 Knorr-Cetina herself characterizes self-organization in the following way. “Self-or-
ganization, in turn, keeps social relations liquid (and presupposes their liquidity):
there is the fluidity of everyone’s readiness to become drawn into temporary engage-
ments with others in voluntaristic collaborations, a fluidity aided by the breakup of
forces of individuation and the holistic competence of individuals trained in object
circuits” (Knorr Cetina, 1999, p. 179). Here, self-organization consists in work self-as-
signment made possible by even distribution of knowledge.

31From UNIX to Technological Utopia

OBSAH

is inversely proportional to its magnitude), which translates to the fact
that there are few projects that attract large numbers of developers while
there are many projects that attract only a small number of developers
(Karatzogianni & Michaelides, 2009, pp. 148–149).

The two-tier structure observed by Karatzogianni and Michaelides
points to the issue of participation inequality noted by several authors
(Holtgrewe, 2004; Krishnamurthy, 2002; Kuk, 2006; McInerney, 2009).
The study by George Kuk is of particular interest here, because it links
participation inequality with knowledge sharing. This author claims that
beside collaborative interactions, FOSS developers also perform epis-
temic interactions, that is, place inquiries on each other’s knowledge.
However, these inquiries can be demanding and so they may easily turn
from exploration to exploitation. Kuk’s point then is that participation
inequality is functional in that it reduces the load of epistemic interac-
tion by restricting it to a narrow group of core developers (Kuk, 2006,
p. 1039). Taken to a more general level, this finding supports Ursula Holt-
grewe’s criticism of sweeping claims that characterize the Internet as
an “undifferentiated mass of simultaneous and arbitrary information”
(Holtgrewe, 2004, p. 14). Indeed, Holtgrewe points to FOSS development
to demonstrate that meaningful action is not drowned in the abundance
of digital information.

Moreover, Kuk’s claim is consistent with the findings of Georg von
Krogh et al., who claim that core developers usually avoid narrow spe-
cialization (Von Krogh, Spaeth, & Lakhani, 2003, p. 1230). Their activ-
ity spreads across a number of modules and requires exploration with
epistemic interaction as one of its forms. We can expect higher levels of
specialization in the activities of occasional contributors, as their moti-
vations and actions are aligned with the project only in certain respects.
However, occasional contributions do not cause disturbances in the
development process. As Hemetsberger and Reinhardt point out, FOSS
projects are able to integrate individual actions with their overall ac-
tivities, regardless of their nature as general maintenance or specialized
contribution. Therefore, these authors characterize FOSS projects as
“coat-tailing work systems” (Hemetsberger & Reinhardt, 2009, p. 1003).

1.2 Utopian Virtualism

Developing software in the networked environment of the Internet
introduces specific conditions that free and open source software de-

OBSAH

32From UNIX to Technological Utopia

velopment takes advantage of. These possibilities are based on two char-
acteristics of digital texts as described by Lorenzo Cantoni and Stefano
Tardini. The first characteristic, persistence, means that every communi-
cation that is mediated by a computer leaves a physical trace, making it
possibly available for someone else for an unspecified amount of time
(Cantoni & Tardini, 2006, p. 44). At first, this seems to apply to all commu-
nication, online or offline – even a voice makes a physical trace. However,
when communicating outside cyberspace, additional effort needs to be
exerted (writing or other forms of recording) in order to capture the
communication and make it accessible for longer periods of time. Within
cyberspace such effort is not needed because all communication takes
place already in the form of text (or, less frequently, in other recorded
forms).

Similarly, the second characteristic means that digital texts (and
other recorded forms) are reproducible without the need to exert effort and
resources that would be needed when reproducing non-digital media
(Cantoni & Tardini, 2006, p. 55). Reproduction requires only computa-
tional resources which, once acquired, are abundant.44 Going one step
further, both characteristics (persistence and reproducibility) are tightly
interconnected with the ability of automated manipulation. This ability
implies that digital text can be manipulated (recorded, reproduced,
searched or edited) in a way that does not require direct and permanent
attendance by a human operator. Automation allows human operators
to specify instructions before the manipulation process, which is then
performed autonomously at the computer’s own pace.

These characteristics of digital texts make possible what Yochai
Benkler emphasizes as the transparency of online culture. As an example,
this author takes the case of Wikipedia45 articles. For any given article, all
changes made to it are traceable in its history, while discussions leading

44 The words “once acquired” are important here. One more important characteristic
that Cantoni and Tardini list is that digital texts are inaccessible to human senses
directly. This means that a computer (often with an Internet connection) is required in
order to obtain and read digital texts. As the issue of the digital divide (see for example
Norris, 2001) reminds us, the spread of this infrastructure is hardly universal.
45 Wikipedia, launched in 2001 and explicitly stating an influence from the free soft-
ware movement (see Wikipedia, 2015), can be considered what Christopher Kelty calls
a modulation of free software practices, that is, an application of one or more charac-
teristics of free and open source software development to areas other than program-
ming (Kelty, 2008, p. 16). Roy Rosenzweig (2006), a historian examining the implica-

33From UNIX to Technological Utopia

OBSAH

to those changes are also recorded on a separate page (Benkler, 2006,
p. 289). Such an endeavor in offline archiving would require large invest-
ments in effort and resources, making it slow and cumbersome. But in
cyberspace, the archiving procedures can be automated. Originating
in the 1970s, free and open source software development seems to be
the first organized effort to employ these possibilities systematically. As
a result, the source code (and its documentation) is by far not the only
set of information that is publicly available in FOSS projects. There are
numerous other sources of information of which the main are: a detailed
history of changes made to the source code, recorded communications
among developers, lists of issues containing discussions on how to solve
them and websites with further information. Such a wealth of infor-
mation about the internal processes of software development projects
lead Benkler to his characterization of such modes of organization as
transparent.

On a more general level, Benkler includes free and open source soft-
ware development under the umbrella of new forms of peer production.
This author claims that the defining characteristics of these forms of
production stem from reduced transaction costs.46 Benkler argues that
market transactions differ from non-market social exchange (such as gift-
giving) in that the calculations or definitions (calculating prices or draft-
ing agreements, for example) necessary for market transactions place
a significant burden on all parties. According to this author, non-market
social exchange is exempted from these costs because it does not involve
explicit calculation or definition (Benkler, 2004, p. 307, 2006, p. 109).
Non-market exchanges traditionally only reached a scope of locally and
temporally restricted interactions, but the advancements in information
technologies achieved in the past decades made possible the rise of what
Benkler calls “effective, large-scale cooperative efforts – peer production
of information, knowledge, and culture” (Benkler, 2006, p. 5). Given that
this new form of production is based on non-market social exchange,
Benkler claims that it not only has a systemic advantage in the form of
reduced transaction costs and better allocation and motivation of the
workforce, but that it also improves the practical capacities of individu-

tions Wikipedia has for historiography, characterizes it in a similar way by posing the
question “Can history be open source?”.
46 In this regard, Benkler bases his argumentation on the classic work of Ronald Coase
(Coase, 1937, 1960).

OBSAH

34From UNIX to Technological Utopia

als by opening them to a broader scope of production activities without
the restrictions placed by traditional models involving price calculation
or strict hierarchical organization (Benkler, 2002, p. 376, 2006, p. 8).

This is a rather optimistic grasp of the phenomenon. But Benkler is
not alone in expressing it. One can find similar views in some of the work
surrounding the concept of collective intelligence, which has been de-
veloped since at least the early 1970s (Wechsler, 1971). Collective intel-
ligence can be defined as the “ability of virtual communities to leverage
the combined expertise of their members” (Jenkins in Uspenski, 2013,
p. 142). While Ivana Uspenski (Uspenski, 2013, p. 148) proceeds to a heu-
ristically inspiring distinction between collective intelligence (based on
mutual evaluation of meaning) and mass intelligence (based on aggrega-
tion of data), other works are often interwoven with utopian visions of
the future. For example, Pierre Lévy foretells the coming of planet-wide
civilization through collective intelligence based in cyberspace and pro-
ceeds further to claim that television will be replaced by omnivision, al-
lowing all humans to watch any place at any time (Lévy, 2005, p. 189, 191).
In his most popular work, Lévy claims that the historical development
which the emergence of cyberspace has triggered implies “a new human-
ism”, one that promotes individual intelligence to a collective level. From
this, “new forms of democracy, better suited to the complexity of con-
temporary problems than conventional forms of representation, could
[…] come into being” (Lévy & Bonomo, 1999, p. 18). Other authors associ-
ate the term collective intelligence with images of “harnessing crowds”
(Malone, Laubacher, & Dellarocas, 2010) or “creating a prosperous world
at peace” (Tovey, 2008) directly in the headings of their works.47 This
demonstrates the positive valence with which the terms “collective intel-
ligence” or “cyberspace” are charged.

Furthermore, such claims can be also found in foundational texts
of the FOSS movement. The essay The Cathedral and the Bazaar by Eric
Raymond can serve as a good example.

47 Furthermore, Francis Heylighen, a former physicist who is attempting to formulate
a general model of the Internet as a system of collective intelligence (Heylighen, 1999;
Heylighen & Bollen, 1996; Heylighen, Heath, & Van, 2004), explicitly formulates his
utopian vision such that the Internet has introduced a cognitive system on a planetary
level, a global brain, and this super-organism can be conceived as a higher level in
human evolution (Heylighen, 2002, p. 2).

35From UNIX to Technological Utopia

OBSAH

That is, that while coding remains an essentially solitary activity, the really
great hacks come from harnessing the attention and brainpower of entire
communities. (Raymond, 1999, p. 39)

The Linux world behaves in many respects like a free market or an ecology,
a collection of selfish agents attempting to maximize utility which in the
process produces a self-correcting spontaneous order more elaborate and ef-
ficient than any amount of central planning could have achieved. (Raymond,
1999, p. 40)

The basic claim made by Raymond in the text is that taking advantage
of Internet infrastructure and employing a certain set of cooperative
customs leads to the establishment of spontaneous order, which is more
efficient than central planning in that it allows the harnessing of entire
communities’ brainpower.48 Additionally, for Jan Ljungberg, specific
ways of knowledge sharing and work coordination signify the forms of
organization of the future (Ljungberg, 2000). For Georg von Krogh and
Eric von Hippel, free and open source software development represents
a new model of innovation that should spread to other fields of produc-
tion (Von Krogh & Von Hippel, 2006, p. 982). Finally, Cory Ondrejka stays
within the boundaries of cyberspace and elaborates upon the possibili-
ties for establishing a “metaverse”, an alternative reality of unmatched
complexity (Ondrejka, 2004, p. 81).

These visions are symptomatic of the enthusiastic anticipation49 of
what cyberspace can offer, and are placed under elaborate criticism by
David Hakken.50 Hakken argues that this anticipation is based on the
assumption that knowledge has replaced capital, labor and natural re-

48 The contraposition of “free market” and “spontaneous order” against “central plan-
ning” evidently hints at a certain positioning on a political spectrum. However, leading
the analysis in this direction would diverge from the purpose of the current text.
49 To be sure, there are also pessimistic expectations with regard to cyberspace, as, for
example, Mark Davis (Davis, 2013, p. 162) shows. Yet it seems that these did not gain
such a momentum with regard to claims about the discontinuity of knowledge-related
processes introduced by cyberspace.
50 The utopian tendencies in Lévy’s work were also critically noted by László Fekete
(Fekete, 2006, p. 742). A more systematic account of the discussion about the utopian
tendencies surrounding digital technologies can be found in the works of Jakub
Macek, who describes the techno-optimistic and techno-pessimistic views related to
digital media (Macek, 2009, pp. 8–19, 2013, pp. 81–90).

OBSAH

36From UNIX to Technological Utopia

sources as central productive forces (Hakken, 2003, p. 9). Indeed, Lévy
starts his book on collective intelligence with a claim that the “prosperity
of a nation, geographical region, business, or individual regions depends
on their ability to navigate the knowledge space” while “power is now
conferred through optimal management of knowledge” (Lévy & Bonomo,
1999, p. 1). Correspondingly, Hakken argues that there is a broader ten-
dency to uncritically accept the “knowledge society” label.

Rather than carefully articulating their view of the proper way to conceptu-
alize the knowledge revolution and then going on to make their case for it,
most performers merely jump on a generally conceded “knowledge society”
bandwagon. (Hakken, 2003, p. 9)

As Hakken demonstrates, this tendency is also present in the works of
prominent authors such as Karin Knorr-Cetina (Hakken, 2003, p. 9).
Furthermore, if we look at the notable work of Manuel Castells, we can
identify the tendency (provided we acknowledge the link between mind,
cognitive processes and knowledge) in his more radical claims such as
the one that: “for the first time in history, the human mind is a direct pro-
ductive force, not just a decisive element of the production system” (Cas-
tells, 2010c, p. 31). While this claim was made in the first part of the first
volume of Castells’s trilogy (Castells, 2010c, 2010b, 2010a) on the infor-
mation age, in the concluding part of the third volume, we can find the
following statement:

The promise of the Information Age is the unleashing of unprecedented pro-
ductive capacity by the power of the mind. I think, therefore I produce. In
so doing, we will have the leisure to experiment with spirituality, and the
opportunity of reconciliation with nature, without sacrificing the material
well-being of our children. The dream of the Enlightenment, that reason and
science would solve the problems of humankind, is within reach. Yet there is
an extraordinary gap between our technological overdevelopment and our
social underdevelopment. (Castells, 2010a, p. 395)

A notable difference between the two statements is that the former con-
stitutes a claim about the actual state of labor organization while the
latter represents an expression of a potential state that could be reached.
This ambiguity is further supplemented by claims of discontinuity: “I do
believe that there is a new world emerging at this turn of millennium.

37From UNIX to Technological Utopia

OBSAH

In the three volumes of this book I have tried to provide information
and ideas in support of this statement” (Castells, 2010a, p. 372). These
characteristics are typical for a speech mode that is closely related to the
utopian visions I elaborated earlier.

Hakken identifies a speech mode, which he calls the “optative form”,
that is indicative of the sweeping claims emphasizing discontinuity in
their images of cyberspace.51 According to this author, the optative
form’s predominant characteristic is that it mixes statements about what
is and what is hoped to be, it blurs the distinction between present and
future (Hakken, 2003, p. 27). In other words, when using the optative
form, authors see the future potential of things as their essence. This cor-
responds to the initial definition that Rob Shields uses in his elaborate
work on the term “virtual” – “that which is so in essence but not actually
so” (Shields, 2003, p. 2). However, Shields is also wary of uncritical ac-
ceptance of the expectations surrounding the virtual:

The hype around digital virtuality over the past decade has been more about
myth and less about actual cyberspaces. As a fad and myth, virtualism is
itself virtual. Symptoms of virtualism include exaggerated expectations of
anything described as ‘virtual’, and unrealistic expectations that digital tech-
nologies will solve social problems. The boom in technology stocks and en-
thusiasm for virtual reality hinted at the ongoing expectations of the virtual.
In line with its historical definitions, it carries a certain promise of positive
potential or virtue. Portrayed as enabling a human virtuosity beyond the
limits of the body or gravity, the legacy of the baroque echos through the
claims of Silicon Valley entrepreneurs. (Shields, 2003, p. 15)

In his older work, Hakken already claims that the images around the
so-called computer revolution should be bracketed as a myth in the an-
thropological sense (Hakken, 1999, p. 18). The logical implication of this
position is a call, made by Hakken, to examine in more detail the knowl-
edge-related processes taking place in the cyberspace (Hakken, 2003,
p. 29). This work aims to answer this call in a specific sense: informed by
the critique elaborated above, the aim of this work is to explore closely

51 Further critique of the positions emphasizing discontinuity can be found in the
work of Steve Woolgar (2002, p. 17) or Marylin Strathern (2002, p. 311). Both authors
claim that the dichotomy between the virtual and the actual (or “real”) does not con-
stitute a mutually exclusive binary opposition. On the contrary, they argue that the
virtual and the actual are mutually co-extensive.

OBSAH

38From UNIX to Technological Utopia

the knowledge dynamics in free and open source software development,
an area of practice which Benkler deemed to typify the new form of cy-
berspace-enabled peer production.

The present work attempts to show how knowledge is dynamized by
networks constituting FOSS projects and how these networks are inter-
related with the practice of rights that were traditionally associated with
ownership. Furthermore, I try to show the knowledge-related limitations
of the images associated with utopian virtualism and frictionless inter-
action of individuals spontaneously emerging to solve problems. These
claims are supported by an elaborate analysis of mediation and resource
flows that take place inside a FOSS project. But before I immerse the
reader in analysis, I need to flesh out several key concepts that will allow
me to formulate more precise questions and to make my findings ex-
pressible.

39Software and Knowledge 39Software and Knowledge

2
Software and Knowledge

2.1 Tools and Design Artifacts in Software
Development
Software is a general designation for the sum of all programs that can
be run on a computer. It represents one side of the software/hardware
distinction, where hardware designates tangible computer components
on which software operates. It is common to say that software consists of
ones and zeros, that is, of digital information. However, ones and zeros
represent the end product that is readable only for machines. When de-
veloping software, programmers are not dealing with ones and zeros,
they use one of many programming languages to produce a strictly for-
malized text – the source code. After the source code of a program is
written, it is turned into a machine readable binary file consisting of ones
and zeros through an act called compilation. Compilation represents an
event in which readable and modifiable text is transformed into a solid
thing that behaves according to its own logic. It is the act of materializa-
tion of an object.

What interests me, however, is what happens before compilation: the
process in which humans and nonhumans are organized in a manner
that results in an object that can be executed and purposefully utilized
by its users. That is to say, I am interested in associational processes that
take place during software development. As claimed by Jacob Nørbjerg
and Philip Kraft, software production typically involves a “complex mix”
of organizational structures, work practices or even politics (Nørbjerg

OBSAH

40Software and Knowledge

& Kraft, 2002, p. 218).52 From this perspective, software is relevantly
defined by Arne Raeithel:

Computer science or informatics appears in this perspective as one of the sci-
ences of human self-regulation, mainly concerned with electronic and virtual
machines used in this process. Software objects may consequently be seen
as predefined constraining contexts (‘forms’) for sign processes (semioses)
mediating between human actors, while at the same time presenting virtual
objects and instruments (‘means’) for self-determined use by the cooperat-
ing persons. (Raeithel, 1992, p. 391).

There are two important points in this definition. First, software is seen
as a constraining context, a digital environment which determines the
options its users have. Any action the user can take has to be pre-con-
ceived by software developers and implemented in a given program.
Second, software represents an instrument, a tool that can be used for
purposes its developers have not envisioned and that can be combined
with other tools to produce unexpected results.53

Software development is carried out by a practice called program-
ming. According to Peter Naur, programming is “matching some signifi-
cant part and aspect of an activity in the real world to the formal symbol
manipulation that can be done by a program running on a computer”
(Naur, 1985).54 However, Naur further defines programming as knowledge
building: a programmer must craft a theory of what is to be matched and

52 This is why ethnography is suggested by several authors for studying it (Dittrich,
2002; Klischewski, 2002; Rönkkö, 2002; Westrup, 2002).
53 These two points can also be found in Christiane Floyd’s work (Floyd, 1992, p. 15).
The common point is that software, while it represents an instrumental means to
achieve goals, constitutes some kind of constraining context for its users.
54 According to Reinhard Keil-Slawik, a new quality emerges from this process.
Sequences of activities that need to be performed to achieve a certain action can be
condensed into a single object or operation. These objects and operations can then
be further combined without the constraints of enforced sequentiality they previously
had. As Keil-Slawik puts it: “prescriptive temporal structures are dissolved by creating
physical objects and corresponding spatial structures” (Keil-Slawik, 1992, p. 182).
Thus, matching real world activities does not mean mirroring them, it means distilling
them into objects or operations that are not limited by the constraints their original
models had.

41Software and Knowledge

OBSAH

in what way.55 Theory, in this sense, represents a support for action not
limited only to know-how, but also including explanations and justifica-
tions of what is to be done. The programmer has to be able to explain how
the important characteristics of real world activities are mapped into the
program and subsequently justify his decision and choices. In this way,
the knowledge needed for software development transcends what is re-
corded in the final product. This knowledge is needed for every modifica-
tion of a program in order for those modifications to form an integrated
whole (Naur, 1985).

In a similar way, Pelle Ehn describes software development as
a process of designing a computer artifact. According to this author,
design is an activity and a form of knowledge in which artifacts and their
use are anticipated and which deals with the distinction between tradi-
tion and transcendence (Ehn, 1988, p. 161). This means that designing
technological objects is a process which draws its resources from what
is currently available and attempts to overcome it. It represents a situa-
tion in which human creativity is needed in order to produce something
new using everything that is already there. However, human creativity,
albeit important, is hardly the only thing that counts. The technological
artifacts already there play a vital role in the process.56,57

According to Ehn, the importance of artifacts lies in the fact that they
are able to augment or replace human activity and can do so with regard
to both communicative and instrumental activities (Ehn, 1988, pp. 162–
163). With this general characteristic, I hold that Ehn has one particular
type of artifact in mind, one that is commonly grouped under the label
“tools”. But in software development, tools also take the form of software.
Therefore, we must consider developers of certain software to be simul-

55 In this sense, Catharina Landström et al. write about “forming an understanding”
with regard to software development (Landström, Whatmore, & Lane, 2011).
56 This is consistent with how Bruno Latour connects his theory with that of Peter
Sloterdijk. “Dasein ist design” says the quote in one of Latour’s texts. And he further
elaborates his position: “There is not the slightest chance of understanding Being once
it has been cut out from the vast numbers of apparently trifling and superficial little
beings that make it exist from moment to moment” (Latour, 2009, p. 139).
57 The importance of things already there is highlighted by Reinhard Keil-Slawik’s
claim that preservation of tools (not their construction) is what differentiates humans
from animals. As he states: “This is essential, because only then does it become pos-
sible to compare a previously built tool with a new one, to communicate about tools,
and to use them as a means for education” (Keil-Slawik, 1992, p. 181).

OBSAH

42Software and Knowledge

taneously users of other software.58 And as users, they are dependent on
the interface of the software-used-as-tool, as it determines the options
available for exploiting the provided functionality.

Furthermore, one other type of artifact is introduced by Ehn: “design
artifacts”. These can be defined as objects (for example descriptions,
models or prototypes) which mediate the design process. Ehn’s charac-
terization of this type of artifact is worth quoting at length:

The role of design artifacts in the language game of design is as reminders
and as paradigm cases for our reflections on existing and future computer
artifacts and their use. The use of design artifacts brings earlier experiences
to our mind and it bends our way of thinking about the future. I think it
is in this sense we should understand them as re-presentations. … I see
descriptions or models as design artifacts to objectify experiences, visions,
and ideas relevant for communication in the design process. … These kind
of artifacts support reflection. … Another category of design artifacts is
prototypes, mock-ups, scenarios with role playing, etc. They differ from de-
scriptions and models in the sense that they also allow for involved practical
experience, not just detached reflections. (Ehn, 1988, p. 169)

There are three important characteristics that Ehn attributes to design
artifacts. First, he shows that representations do not necessarily have to
be symbolic. In the design process, there are objects that are created spe-
cifically with the purpose of representing something, to prove a point.
Second, these artifacts provide snapshots of experiences and make them
intentionally reproducible so that more time can be allocated at reflec-
tion. Third, they also provide new experience through interaction with
the latest version of the desired product. Overall, design artifacts play the
role of inducing or mediating experience and reflection. This constitutes
the relevance of design artifacts for knowledge dynamics in technology
development.

58 In the terminology used by Susan Leigh Star, software tools are boundary objects,
that is, objects that have a varying use or purpose depending on the location they ap-
pear in. Thus, their purpose is ambiguous in general, but clear in particular cases (Star,
2002). Specifically, the dual nature of software as a development target and as a tool is
consistent with Star’s claim (Star, 1999, p. 387) that we can read information infrastruc-
ture as a material artifact (tool) or a trace of activities (development target).

43Software and Knowledge

OBSAH

2.2 The Role of Knowledge in Software
Development

To continue in establishing a model of knowledge dynamics, I draw upon
the work of Mike Reay who considers conscious reflection and new ex-
perience as two main sources of learning, the activity which dynamizes
knowledge. Furthermore, Reay distinguishes two types of knowledge
distribution. Horizontal distribution of knowledge is based on distribu-
tion of experience in space and time. Vertical distribution, on the other
hand, means distribution of knowledge into conscious and unconscious
layers differentiated by the presence or absence of reflection. Differences
in the distribution of experience and reflection can lead to stable patterns
of ignorance or misperception. The barriers leading to this “knowledge
insulation” can be overcome only by mobilization of new experience or
further reflection (Reay, 2010, p. 100). These processes are key for social
arrangements characterized by pooling knowledge because they are
based on constantly overcoming knowledge insulation.

In the previous paragraph I suggest that by providing some sort of
experience or reflection, design artifacts are able to transmit knowledge
through the process of learning. But to grasp the problem in more detail,
one must differentiate knowledge and information just like, for example,
Nico Stehr does. According to Stehr and Ufer, knowledge inherently in-
volves appropriation by a knowing subject, as they put it: “Knowledge
always requires some kind of attendant interpretive skills and a command
of situational circumstances. In other words, the acquisition, dissemina-
tion and realization of knowledge requires an active actor” (Stehr & Ufer,
2009, p. 9). Information, on the other hand, does not require appropria-
tion and therefore can be likened to data, in the sense that it is something
that actors simply have and can pass on. This makes information easily
transferable (Stehr, 1994, p. 120, 2001, p. 44; Stehr & Ufer, 2009, p. 9).59

Overall, Stehr defines knowledge as a model of reality that gives
actors the capacity for action. But the demanding nature of transferring

59 Consider a map as an example. By itself, it is a piece of information that can be
passed quickly from one actor to another (and even more so in a digital form). How-
ever, it takes an actor who can read all the signs, reference points and directions in
order to turn the information into knowledge about locations and possible courses of
action. Considering FOSS development, the same analogy should hold, for example,
with regard to source code which can be shared in a matter of seconds, but which can
take months to study in order to determine the course of its further development.

OBSAH

44Software and Knowledge

knowledge implied by the requirement of appropriation is not the only
problem related to knowledge. To be able to translate knowledge into
action, an actor must also control the circumstances of the situation
(Stehr, 1994, p. 120, 2001, p. 44). In other words, an actor may prove to be
knowledgeable only in conditions that support the utilization of the given
type of knowledge.60 Therefore, I hold the requirement of appropriation
and the necessity of situational control to represent the most important
problems when dealing with knowledge-intensive work practices.

In a similar manner, Loet Leydesdorff makes a distinction between
information and meaning. According to this author, information by itself
is in a state of “still-to-be-provided-with-meaning”. Meaning arises in
the process of relating information to itself in a context of individual
(personal meaning) or supra-individual (discourse) systems of reference.
Therefore, meaning is defined in use (Leydesdorff, 2011, pp. 393–394).
This is consistent with how George Herbert Mead defined meaning, pro-
vided that we think of gestures as of transmitted information:

Meaning arises and lies within the field of the relation between the gesture
of a given human organism and the subsequent behavior of this organism as
indicated to another human organism by that gesture. If that gesture does
so indicate to another organism the subsequent (or resultant) behavior of
the given organism, then it has meaning. (Mead, 1972, p. 76)

Therefore, meaning is derived from the ways in which information
is used, from action.61 In this sense, knowledge and meaning are very
closely tied as ways of making sense from information. This relationship
is further explored by Doyle McCarthy who claims that knowledge is best
conceived and studied as culture. This is to claim that various bodies of

60 With regard to FOSS development, licensing arrangements or establishing devel-
opment environments could be considered a concrete form of an effort to control the
situation in such a way that knowledge related to a certain piece of software could be
applied.
61 It is also common to say that meaning is the result of interpretation. As Elizabeth
Long shows, this process traditionally associated with reading in private can be made
less opaque by explicating the “social infrastructure of reading”, by which she means
not only the socialization and learning processes that establish the competency of
reading, but also the social base of reading groups or other associations devoted to
reading, interpreting and discussing texts (Long, 1993, pp. 190–191). As a result, soft-
ware development projects can be seen as a specific case of reading associations.

45Software and Knowledge

OBSAH

knowledge operate within culture, “that they contain and transmit and
create cultural dispositions, meanings, and categories” (McCarthy, 1996,
p. 118).62

Applied to the area of software development, the theoretical state-
ments above mean that what is embedded in design artifacts is informa-
tion which can be easily transmitted but which can also be easily stripped
of its meaning.63 Knowledge involves the ability to utilize information
contained in objects and to give them meaning.64 In other words, the
source code of a program by itself represents only information. Knowl-
edge arises from the ability to either use the compiled program as an
end-user or read, understand and meaningfully alter the source code as
a programmer. This means that knowledge does not reside either in pro-
grammer’s head or the source code, but can be found only in the interplay
of the two. Knowledge is not the content, it is a quality of interaction.65

The problem of transferring knowledge through its embodiment in
design artifacts essentially corresponds to the classical issue of reciproc-
ity of perspectives explored by Alfred Schütz. According to Schütz, there
is an inherent difference in perspectives among actors because they
are located 1) at different spatial distances from the object while expe-
riencing different aspects of it as typical, and 2) in different biographi-

62 Karin Korr-Cetina’s detailed study of epistemic cultures in natural sciences is a case
in point (Knorr Cetina, 1999). Considering FOSS development, the overlap between
knowledge and culture could be observed on a set of norms that are commonly called
“the UNIX Philosophy”. For a long time, these norms have represented a model for
software design within FOSS projects. This model will be elaborated further in this
work, but for now it suffices to point out that it emphasizes principles such as simplic-
ity, modularity or interoperability.
63 Such decontextualization is documented in a study by Jessica Thurk and Gary Fine,
who examine how importing pieces of architectural drawings causes errors when not
accompanied with the original meaning. This happens despite the standardization
with which tools are designed (Thurk & Fine, 2003, pp. 115–116).
64 According to Hakken, the process of distilling knowledge from information is em-
phasized in the modernist knowledge discourse. In the other direction, production of
information based on situated knowledge is emphasized in the postmodernist knowl-
edge discourse (Hakken, 2003, pp. 37–39). Hakken further claims that these two points
of emphasis form a useful dialectic, keeping the focus on both of the processes instead
of just one (Hakken, 2003, p. 45). In software development projects, we can see this
dialectic at work when a newcomer first appropriates information to gain knowledge
and then use it to create more information for others to appropriate.
65 This claim is also supported by Keil-Slawik (1992, p. 169).

OBSAH

46Software and Knowledge

cal situations, which are projected into different purposes at hand and
systems of relevance (Schütz, 1953, p. 8). These two points also consti-
tute the underlying basis for the distribution of knowledge. We can see
that the knowledge with which software developers approach a program
will necessarily differ from that of its users or newcomer programmers.
Members of each of these three groups approach the object with a differ-
ent purpose, different systems of relevance and different typifications.
This is assuming, of course, that these three groups are homogeneous
in those three regards, which does not have to be the case. But it seems
reasonable to postulate that the differences will be bigger between those
three groups rather than within them. After all, they are defined by
a common experience (developing, using and learning to develop) with
the object.

According to Schütz, the difference in perspectives can be overcome
by two types of idealizations: the interchangeability of standpoints and
the congruency of systems of relevance. According to the first, actors
take for granted that when they change positions, they will be at the same
distance from the object and see it in the same typicality as their coun-
terparts (Schütz, 1953, p. 8). That is to say, actors presuppose a common
experience should they find themselves in the same position relative to an
object. In the light of the topic at hand, it is useful to specify this even
more to state that actors presuppose that they will be provided with the
same information. If not in the analogue environment, then at least in the
digital environment, experience can be equated with providing informa-
tion. But information does not take arbitrary forms; it is structured in
the form of intentionally used design artifacts. These represent the ex-
ternalized and formalized information that is used to distribute common
experience.

The second idealization implies that actors assume the uniqueness
of their and their counterpart’s biographical situations can be set aside
to establish the common purposes at hand and a common system of rel-
evance (Schütz, 1953, p. 8). This means that actors presuppose they can
reflect common experience in the same way, that is to say, draw upon
similar knowledge to process the experience. Here, we arrive at a re-
cursive statement, according to which pre-existing knowledge is used
to produce new knowledge from experience. However, the pre-existing
knowledge and the coming-into-existence knowledge need not have the
same form. While the latter – at least initially – is bound to exist as a re-
sulting state of mind, the former can take the form of an externalized tool

47Software and Knowledge

OBSAH

that is used to process information and indicate its meaning in a common
way. In this way, it is possible to conceptualize tools as externalized and
stabilized forms of reflection, ready to be distributed.

Idealization Substrate Process Externalization

Interchangeability of
standpoints Information Experience Design artifacts

Congruency of systems
of relevance Knowledge Reflection Tools

Table 1
Reciprocity of perspectives in digital environments

These two idealizations show us how the initial differences resulting
from a heterogeneous distribution of knowledge can be overcome, that
is, how a reciprocity of perspectives can be established in the digital en-
vironment. Both of them draw upon externalized and commonly used
objects – design artifacts and tools – which by themselves represent ossi-
fied forms of experience and reflection, but which also allow for further
distribution of common information and knowledge. In the following
chapter, I will continue to explore the cognitive relevance of design ar-
tifacts and tools but I will do so in a way that will introduce the lan-
guage with which it is possible to describe the organizational mode these
objects appear in.

49Network Shaped Knowledge Distribution 49Network Shaped Knowledge Distribution

3
Network Shaped Knowledge
Distribution

3.1 Cognitive Networks

If we try to sum up the role that tools and design artifacts play for
a programmer’s knowledge building, we could come up with a wording
similar to “material means of thought”, an expression used by Edwin
Hutchins to describe the material dimension of symbol manipulation.
Hutchins’s line of argumentation starts with the claim that abstract ma-
nipulation of symbols is not a process that takes place inside an indi-
vidual’s mind. Instead, symbol manipulation should be considered to be
mediated by cultural and physical objects (E. Hutchins, 1995, p. 363).66
This is not to deny that humans process symbolic structures; Hutch-
ins’s aim is to counter the proposition that the cognitive process is purely
symbolic (E. Hutchins, 1995, pp. 369–370).

Hutchins is not the only author proposing what could be called the
central thesis in Theory of Distributed Cognition.67 Andy Clark and David
Chalmers also propose to award externalities with epistemic credit:

66 The tendency to restrict cognition only to matters internal to the individual results,
according to Hutchins, in attributing every cognitive characteristic to the individ-
ual mind while ignoring any role externalities could play (1995, p. 173, 356). This
assumption has been rendered problematic by studies by Bruno Latour (1986), Karin
Knorr-Cetina (1999) or Hutchins (1995) himself.
67 Hutchins’s work is a part of a broader line of thought represented also by authors
such as Jean Lave (1988) or Lucy Suchman (1987, 2007) and applied in fields of study

OBSAH

50Network Shaped Knowledge Distribution

If, as we confront some task, a part of the world functions as a process
which, were it done in the head, we would have no hesitation in recognizing
as part of the cognitive process, then that part of the world is (so we claim)
part of the cognitive process. (Clark & Chalmers, 1998, p. 8)

This seems to be the main criterion for determining whether an object is
a part of a cognitive system.68,69 To define what a cognitive system is, we
can reach for Ronald Giere’s grasp of the concept. In his view, cognitive
systems are specified by what they produce: knowledge. Therefore, cog-
nitive systems, even though they include material objects, are based on
human agency (Giere, 2002, p. 642). We can also use Clark’s and Chalm-
ers’s (1998, p. 8) distinction between pragmatic action (alteration of the
world for its own sake) and epistemic action (alteration of the world in
order to augment cognitive processes, for example search or recogni-
tion) to claim that cognitive systems engage predominantly in epistemic
action.

such as human-computer interaction (Wright, Fields, & Harrison, 2000), religion
(Lawson, 1999; Reimer, 2005), morality (Magnani & Bardone, 2008) or work (Rogers
& Ellis, 1994). Another approach that also refuses to attribute epistemic credit to the
symbol manipulation performed only by the human mind can be found in the theory
developed by Karen Barad, who claims that interaction (involving apparatuses used for
measurement or observation) constitutes an inseparable part of phenomena (Barad,
1998, p. 95). In her more recent work, she brings this claim to its more radical implica-
tions, questioning the metaphysical belief that things have independent sets of deter-
minate properties (Barad, 2007, p. 19). Finally, the central thesis of the Theory of Dis-
tributed Cognition is reminiscent of the cyborg image classically described by Donna
Haraway: “Why should our bodies end at the skin, or include at best other beings
encapsulated by skin? From the 17th century till now, machines could be animated –
given ghostly souls to make them speak or move or to account for their orderly devel-
opment and mental capacities. Or organisms could be mechanized – reduced to body
understood as resource of mind. These machine/organism relationships are obsolete,
unnecessary. For us, in imagination and in other practice, machines can be prosthetic
devices, intimate components, friendly selves” (Haraway, 2006, p. 144).
68 There is an ongoing discussion concerning the criterion as represented, for exam-
ple, by Magnus, who considers whether double-blind studies are a case of distributed
cognition, given that they in principle could not be carried out within a single mind
(Magnus, 2007, p. 301). But these are discussions of rather peripheral cases that are not
very relevant for the present text. Conceptualizing tools as parts of distributed cogni-
tion systems is well established (Clark, 2006; DiMaggio, 1997).
69 Francis Heylighen further characterizes distributed cognition systems with self-or-
ganization, co-opting external media, network structure, selective propagation of
information and production of novel knowledge (Heylighen et al., 2004).

51Network Shaped Knowledge Distribution

OBSAH

According to Hutchins, the development of material means of thought
results in different representations of given problems, so that prob-
lems once considered difficult can be turned into easily solvable ones
(E. Hutchins, 1995, p. 367). This connects directly to Keil-Slawik’s thesis
about removing enforced sequentiality of tasks by condensing them into
a single operation that can be easily performed by a program. A sequence
of tasks can be mapped, represented as a formal function in a program-
ming language, and implemented in a program by adding it to its source
code. After compilation of the modified source code, the operation is
available through the program’s user interface. There, it represents not
only the modification of text (source code), but also the modification of
an object or tool (interface). Depending on the type of interface,70 this
modification can take the form of an added command in a command line
interface or an added element in a graphical user interface, each rep-
resenting the new operation. In cyberspace, each operation that can be
performed has to be an operation of some program and therefore has to
undergo this generally described process. As a result, an action can be
defined as the coordination of condensed task sequences represented
as operations in a software interface. This positions software (along with
the underlying hardware of course) to be the material means of thought
in programming.

Clark further specifies objects that meet the criterion for attribution
of epistemic credit (what I have been calling “material means of thought”
up to now) as “wideware” and defines them in a way that shows their
direct relevance for this text as objects that “act so as to manipulate,
store, or modify the knowledge and information that the organism uses
to reach its goals” (Clark, 1998, p. 269). The sociological relevance of these
claims, as Ronald Giere and Barton Moffat emphasize, lies in the fact that

70 In one of his early texts, Hutchins distinguishes between interfaces based on ab-
stract formalism and direct manipulation interfaces based on graphical representation
of tasks (E. L. Hutchins, Hollan, & Norman, 1985). The former are typically represented
by command line interfaces that rely on a complex and precise syntax of textual com-
mands, while the latter designate graphical user interfaces that rely on operations with
graphical elements. To give an example, copying a file in a command line interface can
by achieved a command like: cp directory1/file_to_be_copied.txt directory2/, while in
a direct manipulation interface, one can simply drag and drop the file with a mouse.
The latter interface seems to be faster and more convenient, however the benefit of
using textual commands is that they can be combined with other commands, creating
a new task sequentiality in a script file that can be executed as a whole, thus represent-
ing a new condensation of tasks.

OBSAH

52Network Shaped Knowledge Distribution

the shape the distribution of actors and objects takes in particular cases
originates in existing social structures (Giere & Moffatt, 2003). Further-
more, Hutchins, when dealing with the question of how the elements of
distributed cognition systems are selected and included, relies heavily
on the cultural context of cognition. Therefore, he proposes what he calls
the “hypothesis of enculturated cognition”, according to which “the eco-
logical assemblies of human cognition make pervasive use of cultural
products. They are always initially, and often subsequently, assembled
on the spot in ongoing cultural practices” (E. Hutchins, 2011, p. 445). In
other words, Hutchins claims that cultural practices play a key role in the
organization of cognitive systems.71

3.2 Actor-Networks

In this work, I assume that social structures and assemblies of cultural
practices take the form of networks. Besides the resemblance in termi-
nology, this decision is also supported by the fact that Hutchins’s work
on distributed cognition is considered by Bruno Latour to be compat-
ible with Actor-Network Theory (Latour, 2005, p. 60). For example, one
of the central claims of Latour’s theory, that connections among entities
are constitutive for them (Latour, 1994, p. 35), can be seen as one of the
more general assumptions behind the theory of distributed cognition,
underpinning the effort to attribute epistemic credit to external entities.72
Furthermore, Hakken introduces the concept of knowledge networking
(broadly consistent with Actor-Network Theory) to avoid some of the
controversies stemming from taking into consideration both modernist

71 There is also a topic within the theory of distributed cognition which roughly
corresponds to the classical sociological dichotomy between actor and structure.
Giere shows that there is a tendency to attribute agency to structures by speaking of
“distributed minds” but claims that this is not necessary and argues for attribution of
agency only to human actors (Giere, 2002, p. 642). In one of his early works, Hutchins
(E. Hutchins, 1991, p. 38) draws a distinction between evolution and design to distin-
guish systems that emerged spontaneously (perhaps as a result of some underlying
structure) from those that were results of conscious planning (attributable to human
actors). More recently, Eviatar Zerubavel and Eliot Smith elaborated on the possibility
of transcending methodological individualism by considering human actors to mutu-
ally constitute the entities of distributed cognition systems for each other (Zerubavel
& Smith, 2010, p. 324).
72 Considering this affinity, it is no surprise to find the two theories elaborated side by
side in overview works such as that of Norton Wise (2011).

53Network Shaped Knowledge Distribution

OBSAH

and postmodernist knowledge discourses and uses it to establish a dia-
lectical perspective (Hakken, 2003, pp. 45–47).

An organized set of wideware (that is, tools and design artifacts) and
its human operators hints at the main types of compositional elements
that form the networks of FOSS development projects. At this point
I draw from Latour’s theory, which provides a useful infra-language that
specifies how could these networks be mapped (Latour, 2005, p. 174). In
other words, it is not a substantial theory of what is going on in any part of
the social reality, but it is a perceptive grid used for observation (Latour,
1996b, p. 11). In Latour’s approach, to interpret means to add something
from the outside, something which has not yet been mapped to the net-
work.73 Subsequently, a good research account should be the one tracing
a network through different locations.

According to Latour, a network is “not made of nylon thread, words
or any durable substance but is the trace left behind by some moving
agent” (Latour, 2005, p. 132). Networks are not simply “out there” in the
sense of a material substance connecting their nodes all the time. Not
all networks are like computer networks which need cables, routers and
switches to be constantly present.74 Usually networks need to be mapped

73 This seems to contrast with more traditional approaches to interpretation based on
subsuming or connecting particular observations with general concepts (see for exam-
ple Reed, 2011, p. 92). As his criticism of theoretical frameworks demonstrates, Latour
is strongly opposed to certain ways of interpretation. According to him, applying
a theoretical framework in the initial stages of research results in making the phenom-
enon under study vanish. The rationale for this claim is that theoretical frameworks
often contain assumptions about invisible social forces which, in the explanations of
the studied phenomenon, tend to substitute other observable causes (Latour, 2000,
p. 6, 2003, p. 3, 2005, p. 102, 2012, p. 138). In this sense, the invisible social forces are
seen by Latour as something that Gregory Bateson called explanatory principles: “an
explanatory principle – like ‘gravity’ or ‘instinct’ – really explains nothing. It’s a sort of
conventional agreement between scientists to stop trying to explain things at a certain
point” (Bateson, 1972, p. 43). Considering Bateson’s characterization of explanatory
principles, I see Latour’s approach to interpretation as an attempt to resist the ten-
dency to close off the analytical process too early by assuming the operation of invisi-
ble forces implied by theoretical frameworks.
74 Latour sees the Internet as increasing the material dimension of networks, he
claims: “the more digital, the less virtual and the more material a given activity be-
comes” (Latour, 2010, p. 8).

OBSAH

54Network Shaped Knowledge Distribution

and visualized to be graspable.75 To further elaborate Latour’s concept of
networks, I note that networks have three basic features:

1.	 A point-to-point connection is established that is physically
traceable and thus can be recorded empirically.

2.	 Such a connection leaves empty most of what is not connected.
3.	 This connection is not made for free. (Latour, 2005, p. 132)

First, we can see that the tracing is done on a material, not conceptual
level. As Latour would put it, the world needs to be allowed to “put itself
in order” (Latour, 2005, p. 184).76 But this “putting into order” is nothing
mysterious, it is traceable and accountable. As Latour claims, social for-
mations hold together because of graspable entities that operate within
them. And it is by tracing the connections that these entities are part of
that we can understand the particular case of order that is established. In
this research project, it means focusing on the tools and platforms used
for version control, issue tracking, documentation or direct communica-

75 In this sense, Latour’s conceptualization of networks seems to be rather analytical.
According to Latour, networks can be observed in various forms of organization. Any
actor can be decomposed into a set of network relationships and then recomposed
(Latour, 2010, p. 5). On the other hand, Castells’s conceptualization of networks is
more substantial. Within it, networks represent a separate organizational form defined
against centralized organizational forms (Castells, 2000b, p. 695, 2000a, p. 15) and
empirically identified in structures that are commonly designated as networks (such as
the Internet, hypertext, or financial networks).
76 This strand of Latour’s thinking is heavily influenced by Harold Garfinkel. Accord-
ing to Latour, both he and Garfinkel share the view that sociology should be a science
examining how society holds together (Latour, 2005, p. 13). Although Latour does
not use the concept, Garfinkel’s definition of ethnomethodology explicitly rests on
a presupposition that social settings are to be viewed as “self-organizing”. Garfinkel
further elaborates the concept as follows: “Any setting organizes its activities to make
its properties as an organized environment of practical activities detectable, count-
able, recordable, reportable, tell-a-story-aboutable, analyzable – in short, accountable”
(Garfinkel, 1967, p. 33). However, it seems that Garfinkel is not the only interactionist
precursor of Latour’s approach. If we compare Herbert Blumer’s methodological
approach (Blumer, 1986), described by Martin Hammersley as a program of natural-
istic research (Hammersley, 1990, p. 156), it seems to be compatible in all points that
Hammersley lists. In this context, the concept of self-organization is different from its
other version rooted in the tradition of cybernetics (Ashby, 1962; Von Foerster, 2003b)
and utilized most notably as the concept of autopoiesis (originally developed by Hum-
berto Maturana (Maturana, 1980) and Francisco Varela (Maturana & Varela, 1987)) in
the systems theory of Niklas Luhmann (Luhmann, 1995, 2014).

55Network Shaped Knowledge Distribution

OBSAH

tion and tracing their origin, how they are used in the studied project and
how they got there in the first place. It also means focusing on the ele-
ments within them, that is, individual contributions, issue reports, docu-
mentation pages or chat channels and the conversations within them.
Tracing how these entities are put together will allow me to examine how
this specific type of order is put together.

Second, networks are made of connections and so they differ from
what is commonly called an area, a field, a sphere, or any surface in
general. It is for this reason that networks have no borders (Latour, 2010,
p. 5), they just leave everything that is not part of them unconnected
(Latour, 2005, p. 242). As such, Latour claims that networks are “by no
means comprehensive, global or systematic, even though they embrace
surfaces without covering them, and extend a very long way” (Latour, 2012,
p. 118). He then goes on to label everything that is unconnected with the
word “plasma”. It represents everything “which is not yet formatted, not
yet measured, not yet socialized, not yet engaged in metrological chains,
and not yet covered, surveyed, mobilized, or subjectified” (Latour, 2005,
p. 244). This implies that the characteristics of a network could be arrived
at by examining what is not connected just as well as what is. This is not
a call to examine everything, but rather a call to include entities that as
we understand could be connected though the connection is avoided, or
are being connected at the time of observation. For this research project,
it means closely studying the cases of newcomers who attempt to join the
software development project. It also means examining the tools or plat-
forms that the maintainers for some reason avoid using. Elaboration of
such cases can offer key insights into the inner workings of the network.

Third, Latour repeatedly states that the connections made within net-
works are “not made for free” (Latour, 2005, p. 132) or that sites have to
“levy the means” (Latour, 2005, p. 174) in order to influence other sites.
Such statements point to the role resources play in building networks.
Indeed, to connect something does not just mean attaching it. It means
searching for something, appropriating it, learning how to use it, spend-
ing time with it and modifying it, or buying something, creating some-
thing and deserving something. In other words, resources are spent
on making connections and making actor-networks more extensive.
Without resources, networks will hardly flourish and so for explaining
how a certain network operates, it is necessary to shed light on the re-
sources it uses to do so. This also applies to this research project. Servers
are necessary to run source code repositories, issue databases or chat

OBSAH

56Network Shaped Knowledge Distribution

channels. But servers need to be provided, powered and maintained,
people need to be paid and legal entities must represent every attempt at
gaining financial resources. Thus, to trace the tools and platforms means
also finding out how they can operate, what resources make that possible.

Now I will attempt to describe the difference between the two basic
types of units that form networks, that is, mediators and intermediaries.
The latter are defined by Latour in the following way: “An intermediary,
in my vocabulary, is what transports meaning or force without transfor-
mation: defining its inputs is enough to define its outputs” (Latour, 2005,
p. 39). Thus, intermediaries are regular and predictable, just like machines
that function reliably in accordance with expectations of their operators.
Mediators are precisely the opposite; their output cannot be predicted
from their inputs, so every time they must be considered with all their
particular characteristics. Thus, mediators are anything but regular; they
are like unreliable, broken or unfinished machines that seem to do what-
ever they want.77

Whether an entity is a mediator or an intermediary is not inscribed
into its nature once and for all, but depends on its observed behavior. This
means that an intermediary can turn into a mediator at a certain point in
time (as when an error is discovered in a piece of software leading to
unexpected behavior) or from a certain point of view (as when an unex-
perienced user is discovering unknown functions that certain piece of
software can perform). This also applies to the transition from mediator
to intermediary (as when a bug in a piece of software is fixed or a user
learns what to expect).

In this perspective, mediation is a key concept that needs to be elabo-
rated further. In one of his texts, Latour offers four meanings mediation
has: translation, composition, black-boxing and delegation. According to
this author, translation is “displacement, drift, invention, mediation, the
creation of a link that did not exist before and that to some degree modi-

77 These definitions appear to be analogous to the definitions of trivial (independent
of their past states and therefore predictable) and nontrivial (dependent on their past
states and therefore unpredictable) machines developed by Heinz von Foerster (Von
Foerster, 2003a, pp. 309–313). This line of thought is further developed by Ranulph
Glanville, who considers scientific knowledge to be a cumulative stabilization over
examination of in principle unpredictable (because they are unopenable) black boxes
(Glanville, 1982, 2007).

57Network Shaped Knowledge Distribution

OBSAH

fies two elements or agents” (Latour, 1994, p. 32).78 If we start with the
premise that a relation between two elements modifies them, it seems
logical to claim that connections are constitutive for those elements.
Their “essence” is to be found in the links that connect them to others.
Those connections allow them to act in ways they would not be able to
just by themselves. This is the second meaning of mediation, namely
composition (Latour, 1994, p. 35). Latour goes as far as equating embed-
dedness in various configurations of connections with different modes
of existence (Latour, 2007a, p. 24). Therefore, interaction can be seen as
action which is shared with actors that have different ontologies because
they are made of connections from other spatio-temporal frameworks
(Latour, 1996a).79 Furthermore, this meaning of mediation can be related
to the claim made by Hutchins and Clark, that actors widen their options
for epistemic actions by interacting with wideware; by doing so they
achieve augmented cognitive results. Programmers use software inter-
faces in order to perform task sequences that are condensed into easily
performable operations. The way these operations are designed and im-
plemented in an interface determines a programmer’s options for action.

However, composition may not be visible at first sight. This is a result
of the black-boxed nature of mediators or intermediaries (Latour, 1994,
p. 36). Their composition is opaque unless an effort is made to make
them more transparent. As I suggested earlier, compilation, the act of
transforming human readable source code into machine readable binary
files, represents the finest act of black-boxing. The contents of a binary
file after compilation are not intelligible for human readers and thus an
understandable text is turned into a black-boxed thing. Finally, delega-
tion makes explicit what mediators or intermediaries do: they achieve
a spatial and temporal shifting of action (Latour, 1994, p. 39). They make
overcoming distances and durations possible to bring a certain kind of

78 It seems that the concept of translation is roughly analogous to the concept of
emergence used in the systems-oriented tradition of thought, see for example the work
of Poe Yu-Ze Wan (Wan, 2011, pp. 69–82). However, while emergence is associated with
the premise that the whole is always more than the sum of its parts, in Latour’s ap-
proach, the whole is always smaller than its parts (Latour, 2011, p. 6). This is so because
the whole black-boxes its composition by appearing as a single agent.
79 John Law articulates this perspective through the term empirical ontology,
which he summarizes in the following way: “It washes away assumptions about pre-
given realities and instead asks questions about how realities are done in practices”
(Law & Lien, 2013, p. 3).

OBSAH

58Network Shaped Knowledge Distribution

action to a situation. In cyberspace, delegation is carried out primarily
by persistent digital text or the interface of a compiled program. They are
able to overcome distance and endure time in order to carry information
(digital texts) or carry out an operation (interfaces).

To sum up Latour’s perspective, any interaction takes place in a situ-
ation which is full of elements that originated somewhere else, at a dif-
ferent time and perhaps were put into motion by some other agency. This
means that an observer of an interaction should be led away from it and
drawn towards different places, times and agencies that played a role in
putting together elements of the examined situation. This perspective
is based on the assumption that social phenomena are constructed of
traceable elements, which are formed to provide stability. The title of
one of Latour’s studies simplifies this point: “technology is society made
durable” (Latour, 1991).80,81

To sum up my theoretical approach, I will now go through the most
important points I made in the last two chapters. I argued that program-
ming, an activity central to software development, requires knowledge
not only in the area of how to use programming languages and other
tools, but also significant knowledge that consists of a theory, or an ap-
proach, with which a particular program is developed. An important role
in the software development process is also played by artifacts. These
may be used either as tools that augment or replace human activity, or
as design artifacts, intermediary outcomes which allow for further re-
flection or new experience. Reflection and experience form the basis of
vertical and horizontal distribution of knowledge, and so any change
in the distribution of knowledge must come through these processes.
However, it is necessary to differentiate knowledge that involves ap-
propriation by an actor and information which denotes data that actors

80 It is also important to note that this is a recursive problem – a similar point is made
by Dominique Vinck with regard to technology itself. According to her, a constant
effort in both areas of production and use of technology is necessary in order to keep
a technology existing. The material dimension of a technological object may create the
basis for its performance, but it cannot be fully grasped without considering a number
of actors and intermediary objects organized toward it. This creates the ground for the
“objectivity of technology” (Vinck & Blanco, 2003, p. 212).
81 In this sense, Latour proposes a specific kind of materialism. He tends to resist an
idealized form of materialism that takes as a reference point the notions of what things
in themselves should ideally be. Instead, Latour directs attention to actual processes
that result in things as they are in practice (Latour, 2007b, p. 139).

59Network Shaped Knowledge Distribution

OBSAH

possess. A similar distinction can be made with regard to information
and meaning, where the latter arises from relating information to itself
within a system of reference.

Therefore, within software development, design artifacts consist of
information that can be easily stripped of its meaning, or in other words,
decontextualized. To resist this, reciprocity of perspectives must be es-
tablished among the parties exchanging design artifacts. I delimited
three main aggregates according to their experience with developed
software: developers, newcomers and users. I also assume that these
groups are internally more consistent than among each other. I further
attempted to contextualize the idealizations that, according to Schütz,
lead to reciprocity of perspectives within the digital environment. Spe-
cifically, I related the interchangeability of standpoint idealization with
the distribution of information as experience and also with the distribu-
tion of design artifacts as stabilized information structures. I also related
the congruency of the system of relevance idealization with the distribu-
tion of knowledge stemming from reflection and also with the distribu-
tion of tools as stabilized reflection structures. As a result, the stabilized
structures of experience and reflection – the design artifacts and tools –
provide conventional ways to produce shared knowledge.

On this line of reasoning, tools and design artifacts play a central
role. It is through them that cognitive processes leading to the establish-
ment of knowledge take place. They constitute the so-called wideware,
the parts of cognitive systems that are external to humans. At the same
time, the distribution of wideware in particular cases originates in exist-
ing social structures. These structures, I assume, take the form of net-
works which can be assembled as conglomerates of physically traceable
connections that are selective and require resources to be maintained
or extended. The elements operating within a network can be of two
types, reliably transporting intermediaries and unpredictably transform-
ing mediators. What these elements perform can be grasped with the
concept of mediation and its four meanings: translation, composition,
black-boxing and delegation. By tracing the mediation of identified ele-
ments, a network can be assembled and described as a form of explana-
tion of a phenomenon.

I will now use the implications of this section to reformulate the
problem at hand. In the following chapters, I will assume that the net-
works which form free and open source software development projects
contain elements (wideware) that are formative for the cognitive pro-

OBSAH

60Network Shaped Knowledge Distribution

cesses which lead to the induction of knowledge. The theoretical elabora-
tion of idealizations as sources of reciprocity of perspectives represents
my starting clue, but the strategy of network tracing leads me from theo-
retical premises to particular elements and resources that establish the
studied knowledge networks. As a result, there are two specific ques-
tions to be asked about the knowledge networks of free and open source
software. The first is how digital texts and software interfaces (as mate-
rial means of thought) mediate actions of programmers. The second is
how, or using what resources, the price to make connections is paid in
cyberspace. Thus, the following analysis will not be limited only to the
examination of the most immediate practices, but will also be aimed at
exploring the less visible fringes of the network that make them possible.
To provide the substrate for the analysis of these questions, I will first
describe the four most significant practices I encountered during my
fieldwork in a FOSS project.

61Practices of a FOSS project 61Practices of a FOSS project

4
Practices of a FOSS project

4.1 Code allocation
The development of the Pitivi video editor started in 2003 as Edward
Hervey’s end-of-studies project at the EPITECH engineering school in
Paris. Initially, there were 10 students working on the project, aiming
to have something usable before graduating. They decided to base their
work on an existing FOSS multimedia framework known as GStreamer.
This decision allowed for the functionality already present in GStreamer
to be gradually implemented in Pitivi without re-inventing it. But this
also meant that Pitivi relied heavily on GStreamer, which was at that time
under heavy development and was not considered stable. Therefore, in
the first years of development, the focus was aimed at GStreamer and
Hervey transformed this activity into a full time job. After graduating, he
was hired by a company called Fluendo in order to work on GStreamer.
This lasted two years during which development of Pitivi itself was in
a state of limbo. After that, Hervey co-founded the multimedia division
at a company called Collabora, in order to develop Pitivi and the com-
ponents it relied on. In late 2008, Collabora hired two new developers to
work on Pitivi and related technologies. This boosted development that
stalled during 2005–2007.

At that time the underlying framework for Pitivi consisted of
GStreamer and its plugins. However, it turned out that in order to create
a video editor on top of this framework, a lot of additional work had to be
done. To solve this problem, and to make the solution re-usable, Hervey
created a program called GStreamer Editing Services (GES) in 2009. In

OBSAH

62Practices of a FOSS project

2011, it was officially announced that Pitivi’s next version will be based on
GES. The subsequent release marked a large change in the architecture
of the program, which brought with it a number of issues. The main focus
of development at the time of writing is on stabilization that is necessary
for releasing the 1.0 stable version of Pitivi.

The most recent component in the Pitivi architecture is a library82
called GStreamer Editing Services (GES). This library filled the space
between Gstreamer, which provides very general functionality through
text commands, and Pitivi, which is designed to provide specific video
editing functionality through its graphical interface. GStreamer is
a library that is not intended only for video editing, but for media han-
dling in general, and thus a lot of work must be put into condensing
GStreamer functionality into operations that are conventionally used
in video editing. To make this work re-usable, it was put into a separate
library (GES), which can be used by other video editing programs. The
ambition to create a common base for video editing programs can only
be understood when we consider the number of projects that aimed at
developing an open source video editor in recent years. An overview
created by one of Pitivi maintainers lists 54 projects, 9 of which are still
active.

The effort that aims to transform what has been initially at the core
of Pitivi itself (and thus specific for only this program) into a library
that is able to provide functionality to many other programs is indica-
tive of an “upstream first” approach to software development, a conven-
tion that forms a cornerstone of the programming theory (in the sense
of Naur’s theory discussed above) with which Pitivi maintainers operate.
This principle was described by one of the Pitivi maintainers at the
GNOME User and Developer Conference (GUADEC) 2013:

82 A library is a specific type of program that is in most cases invisible to the end-user
but which is essential in that it provides general functionality that is used by programs
that interact with users. The existence of libraries allows for modularity (libraries spe-
cialized in function may be combined) and reuse (the functions provided by a library
may be used by a wide variety of programs) of components in software design.

63Practices of a FOSS project

OBSAH

It basically means: no hacks. You discuss with upstream83 such as upstream
GStreamer, upstream GTK84 and everything and you work out solutions in
cooperation with them and you don’t put some stupid hacks in your applica-
tion downstream instead of fixing the problem for everybody.

What is interesting here is that in the world of free and open source soft-
ware, the word “hacking” usually comes with positive connotation – in
general, it denotes a creative and clever leverage of formal systems. But
in this case, “hacks” are associated with stupidity. It denotes a way of
solving problems that is faster and easier but that will eventually result
in fragmentation and hindering of development in the wider commu-
nity. On his blog, the same maintainer likens the difference between the
“upstream first” approach and “stupid hacks” to the difference between
“being a good citizen” and “doing your own thing in your corner”. This
is why many Pitivi developers do not actually work on Pitivi itself, but
rather on some of the underlying libraries. This also illustrates how insti-
tutionalized this type of software development is today.

With institutionalization a set of formal rules usually appear to regu-
late an activity and free software development is no exception. In this
context, the most prominent formal rules are expressed by licenses
which define the possible uses of licensed source code. The variability
of licensing use can be exposed by the categorization of plugins that
GStreamer developers use and which result in a specific architecture of
the library. GStreamer handles multimedia by sending streams of data
through series of plugins. This means that the components which make
GStreamer useful are packaged independently and may or may not be
installed together with it. This seemingly odd design is enforced by li-
censing issues with various elements inside the plugins.

The GStreamer maintainers differentiate plugins into four categories
based on source code quality and licensing: base, good, ugly and bad. The
base and good plugins are unproblematic with regard to both licensing
and code quality, as the maintainers put it:

83 In software development, upstream and downstream specify the direction of func-
tionality use among programs. The more general functionality usually lies in libraries
(upstream) and is used for specific purposes in user-facing applications (downstream).
84 The GIMP Toolkit represents a set of libraries which provide functionality for pro-
grams developed within the GNOME framework. It was originally developed for the
GIMP graphical editor (hence the name), but it later became a standard set of libraries
for the whole GNOME desktop environment.

OBSAH

64Practices of a FOSS project

A collection of plug-ins you’d want to have right next to you on the battle-
field. Shooting sharp and making no mistakes, these plug-ins have it all: good
looks, good code, and good licensing. Documented and dressed up in tests.
If you’re looking for a role model to base your own plug-in on, here it is.85

As indicated by their names, the “ugly” and the “bad” plugins are the
problematic groups, each in their own way. Bad plugins simply have bad
code quality and cannot be relied on. In this sense, they are technologi-
cally inferior to the rest of the plugins. By labeling them bad, GStreamer
maintainers renounce their responsibility for their performance and
support. They also renounce any commitments to fixing issues that are
reported. Performance of these plugins has low priority so the only way
that issues can be fixed in this area is when someone volunteers to do it:

Don’t bug us about their quality – exercise your Free Software rights, patch
up the offender and send us the patch86 on the fastest steed you can steal
from the Confederates. Because you see, in this world, there’s two kinds
of people, my friend: those with loaded guns and those who dig. You dig.87

Here, the GStreamer maintainers emphasize the “Free Software rights”
that are granted by the use of free software licenses and permit modifi-
cation and redistribution of the code. However, the maintainers expect
the contributors to exercise only the right to modify the code, not to re-
distribute it. The patch should be sent to them for review and redistribu-
tion. While this practice may seem as free-riding on the work of others,
it is consistent with the “upstream first” principle by keeping develop-
ment from fragmentation into a number of parallel versions. At the same
time, the author retains his authorship and is provided with a distribu-
tion channel that reaches a wide audience. In other words, in exchange
for providing the free software rights, the GStreamer maintainers expect
contributors to be good citizens.

85 An explanation of the various plugin modules and how they were split up. GStreamer docu-
mentation page. Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/
documentation/splitup.html.
86 A patch is a term denoting a modification of source code that is made in order to fix
a particular issue.
87 An explanation of the various plugin modules and how they were split up. GStreamer docu-
mentation page. Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/
documentation/splitup.html.

http://gstreamer.freedesktop.org/documentation/splitup.html
http://gstreamer.freedesktop.org/documentation/splitup.html
http://gstreamer.freedesktop.org/documentation/splitup.html
http://gstreamer.freedesktop.org/documentation/splitup.html

65Practices of a FOSS project

OBSAH

However, the right to redistribute the code by other parties is still
present and serves as a safety that counterbalances the maintain-
er’s power stemming from the review and redistribution process. When
contributors become unsatisfied with the way current maintainers
operate, it is always possible to duplicate the whole source code of the
developed program and start maintaining a parallel project. This practice
is called forking.88

Ugly plugins, the fourth and final remaining category is character-
ized by licensing issues. GStreamer maintainers retain their responsibil-
ity for fixing issues that are reported against this group of plugins, but
note there are difficulties in distributing them:

There are times when the world needs a color between black and white.
Quality code to match the good’s, but two-timing, backstabbing and ready
to sell your freedom down the river. These plug-ins might have a patent
noose around their neck, or a lock-up license, or any other problem that
makes you think twice about shipping them.89

To fully understand the extent of problems that licensing issues pose
for the GStreamer project, it is necessary to note that key functional-
ity is often accompanied by restrictive licenses or patents.90 As a result,
GStreamer distributors face a dilemma:

88 Although generally possible, forking is rather rare and is seen as a last resort in
cases where every other option to resolve differences failed. Generally, forks are ac-
companied by argumentation that justifies the duplication of efforts, sometimes criti-
cally labeled as an instance of the ‘not invented here’ (NIH) syndrome that developing
two parallel versions of a program implies. The argumentation also serves to draw
contributors who must decide whether to stay with the original project or become part
of the new one.
89 An explanation of the various plugin modules and how they were split up. GStreamer docu-
mentation page. Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/
documentation/splitup.html.
90 For example, patented software is necessary in order to process files in the omni-
present MP3 format. The MP3 format has its free alternative in the free OGG Vorbis
format, but the use of this format is far from standard. Contrary to licenses which
affect precisely defined parts of source code, where an ex post change of their terms is
very hard if not impossible in most cases, patents are problematic because they affect
certain technology in a more general sense and allocate the power to decide into the
hands of one formally defined party. Even though the party may permit a free use of
the patented technology, there is no guarantee that this will not change in the future,

http://gstreamer.freedesktop.org/documentation/splitup.html
http://gstreamer.freedesktop.org/documentation/splitup.html

OBSAH

66Practices of a FOSS project

Due to this situation, many companies, including major GNU/Linux distribu-
tions, get trapped in a situation where they either get bad reviews due to
lacking out-of-the-box media playback capabilities (and attempts to educate
the reviewers have met with little success so far), or go against their own –
and the free software movement’s – wish to avoid proprietary software.91

In attempting to help overcome this dilemma, GStreamer maintainers
opt for a lesser evil – they choose to use the GNU Lesser General Public
License (LGPL) which is a free software license that permits distribu-
tion together with proprietary software (as opposed to the classic GNU
General Public License).92 The proprietary or patented software is then
packaged into a separate body of plugins so that the users may decide
(according to their needs, local legislation, or their attitude toward using
proprietary or patented software) whether they want to install and use it.
As a result, the plugin architecture of GStreamer reflects this and moves
the responsibility from GStreamer maintainers to users or local distribu-
tors, where the dilemma has to be negotiated over and over again.93

This problem also applies to all applications that use GStreamer to
handle multimedia files. As a result, GStreamer maintainers recommend

possibly as a result of transferring the patent to another party. In this light, a call made
by Polk Wagner to supplement licenses as ways of organizing open source software
development with patents (Wagner, 2003, p. 1031) seems inadequate.
91 Licensing your applications and plugins for use with GStreamer. GStreamer documentation
page. Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/documenta-
tion/licensing.html.
92 The classical GNU General Public License introduces the necessity to license all
derivative works with it, a characteristic that is often called a “viral feature”.
93 The ambiguity regarding licensing and patents in this area is so deep that Fluendo,
one of the companies involved in the GStreamer project has partly built its business
model around it: “While Linux OS does provide multimedia functionality in terms of
free media players, unlike major paid operating systems like Microsoft Windows and
Apple OSX it does not come with licensed codecs pre-installed. Without these codecs,
many Linux users and organizations unknowingly violate intellectual property laws,
putting themselves and their organizations at risk. Patent infringement has serious
consequences and, especially for larger organizations with many users, the cost can be
substantial. […] This is where we come in. From proprietary codecs to our robust DVD
software, Fluendo legally protects organizations and empowers users to engage with
multimedia like never before. Experience unmatched playback quality with the peace
of mind that you’re adhering to international audio and video patents.” (The Legal Risk
that Linux Users Face. Fluendo marketing materials. Accessed: 2015-04-09. Available at:
http://www.fluendo.com/corporate-linux-users/.)

http://gstreamer.freedesktop.org/documentation/licensing.html
http://gstreamer.freedesktop.org/documentation/licensing.html
http://www.fluendo.com/corporate-linux-users/

67Practices of a FOSS project

OBSAH

that all developers of applications utilizing their framework use the LGPL
license as well, in order to be able to use the functionality contained in
“ugly” plugins. But this is not the only option that developers of other
applications have. They may also use the GPL license and supplement it
with a clause stating that GStreamer plugins are exempted from the obli-
gations of the license. However, GStreamer maintainers state that using
a GPL license with a clause would result in hindrances to sharing source
code among projects and therefore recommend the standard LGPL:

Our suggestion among these choices is to use the LGPL license, as it is what
resembles the GPL most and it makes it a good licensing fit with the major
GNU/Linux desktop projects like GNOME and KDE. It also allows you to
share code more openly with projects that have compatible licenses. As you
might deduce, pure GPL licensed code without the above-mentioned clause
is not re-usable in your application under a GPL plus exception clause unless
you get the author of the pure GPL code to allow a relicensing to GPL plus
exception clause. By choosing the LGPL, there is no need for an exception
clause and thus code can be shared freely between your application and
other LGPL using projects.94

The GPL and LGPL licenses are standard in free software development
and their wide use allows for re-appropriation of source code between
projects without the need to negotiate licensing conditions. On the other
hand, the inclusion of a non-standard clause into one of the licenses in-
troduces a requirement of negotiation and complicates “free sharing” of
source code among projects. Thus, licensing may be seen as a part of the
(legal) infrastructure of sharing in the sense that abiding to standards
allows for frictionless distribution of source code.

4.2 Knowledge Channeling

The Internet relay chat (IRC) is designed to facilitate synchronous com-
munication, that is, communication where both parties are present at the
same time. Internet relay chat simulates the space for communication
in a way that not being present means missing the communication – no

94 Licensing your applications and plugins for use with GStreamer. GStreamer documentation
page. Accessed: 2014-07-23. Available at: http://gstreamer.freedesktop.org/documenta-
tion/licensing.html.

http://gstreamer.freedesktop.org/documentation/licensing.html
http://gstreamer.freedesktop.org/documentation/licensing.html

OBSAH

68Practices of a FOSS project

history is recorded for those who join in to read. Pitivi maintainers cir-
cumvent this limitation by using “bouncers”, programs that run constantly
on a server and through which they connect to their chat accounts. This
allows them to be connected to IRC channels even when they are asleep
and their computers are shut down. When they connect again, they can
read what happened when they were away and see if someone tried to
talk to them. In this way, they are using IRC also as an asynchronous
means of communication.

The basic organizational unit of IRC is a channel, which repre-
sents a chat room where those who are present see the communication
taking place. Channels are differentiated by topics of interest: there is
a Pitivi channel, a Gstreamer channel, a GNOME documentation team
channel, etc. People are known to be present on certain channels so
when I wanted to talk to them, I had to go where they were. Sometimes
I went to a channel because of its overall specialization and sometimes
I aimed for a particular person. In this way, the IRC channels represent
reservoirs of knowledge. This is what I noted when I was beginning my
work on the user manual:

I needed to make sure that the new page I created gets to the .pot file for
translators to work on. No one at Pitivi knew for sure what was needed so
I joined the channel #i18n [internationalization] and asked. I explained my
problem and provided info on which module it is related to. Within an hour
I got my answer and a place where to check that everything went ok. Went
back to #pitivi and told others the result.

Such trips to various channels in order to retrieve specific information
are a common practice in this environment. Since one can be connected
to multiple channels simultaneously, it is not even necessary to leave the
current channel. All that is needed is the name of the channel and the
network it belongs to.95

What takes place within a channel is similar to a screenplay text. The
communication is sequentially structured, actors enter and leave, say

95 IRC channels are grouped into overarching networks which provide servers for
their operation. During my fieldwork, I was present in two networks: Freenode and
GimpNet. The former hosts the channels of FOSS projects in general while the latter
hosts channels that belong specifically to the GNOME project.

69Practices of a FOSS project

OBSAH

something and do something96 while they are present. All acts leave traces
in the backlog. However, it is not necessary to communicate actively the
whole time one is connected. It is common to be present in the channel
just to monitor it for relevant discussions (a practice called “lurking”) or
to be available for others. For example, at the time of writing, there are
around 30 people (not including bots) connected to the Pitivi channel
even when no discussion is taking place. The lurking practice was jok-
ingly referred to in one conversation:

Chris: sounds like it’s probably doable, but i’ll have to do some more poking
and research
Chris: it’s not an 8am poke around before work task ;)
Steve: Indeed :)
Steve: Anyway, hope you’re having fun with all this, always interesting to
discover new techs :)
Steve: (and fix stuff on the way)
Chris: oh yeah i’m having fun diving back into gtk+ stuff
Chris: did a little work on gimp aaaaages ago (in powerpc mac days)
Steve: And jack is always very helpful, even when not giving out his code
ahaha
Chris: in the meantime, adding more irc channels to my defaults :D
* chris idle ALL the channels!
Steve: Yeah I think I remember you telling me this :)
Steve: Ahaha that’s the spirit
Chris: :D
Steve: 17 channels open here :)
Steve: All these conversations I will never read :)

In this conversation, Chris was returning after a long period of time
to work on code that uses the GTK+ toolkit and investigated a task he
wanted to accomplish. We can see that the return and investigation
involve adding related IRC channels into a set of channels with which
connection is automatically established (the “defaults”) when his IRC
client is opened. But this does not necessarily mean that he will read

96 There is a way to write a message so that it refers to the author from the position of
a third party. This is often used to let others know what one is doing or why one is not
responding. Such messages begin with an asterisk and look like this: “* [nickname] is
still reading the backlog”.

OBSAH

70Practices of a FOSS project

all conversations that take place within the channels. He just wants to
have those channels ready when he will need to make an inquiry. This is
another example of using IRC channels as reservoirs of knowledge.

Communication inside a channel often oscillates between bursts of
activity and pauses in conversation. This is obviously a result of devel-
opers being from different timezones and having differently structured
work time. However, there also seem to be other mechanisms at work.
First, an ongoing discussion draws attention to the channel. Second,
when someone starts a discussion, it tends to sustain itself by provoking
new inputs. Third, when participating in a discussion, others can see an
actor’s availability and often start a new conversation.

Thus, communication on IRC is often multi-threaded. There can be
two or more simultaneous conversations taking place at the same time.
Multi-threadedness means not only that there are several dyads com-
municating at the same time, but also that one can participate in more
than one conversation. Such situations are demanding in response speed
and responding slowly represents the risk of losing a counterpart’s atten-
tion. Everyone is multitasking and so one is quickly driven away from the
channel if nothing new happens in a while.

There is a mechanism though, that allows for making others pay
attention. Writing someone’s nickname in a message generates a noti-
fication in that user’s desktop client. The notification system attempts
to draw attention to the discussion. This can get annoying when over-
or misused, and so I have witnessed maintainers having to calm down
eager newcomers several times. On the other hand, some messages are
not aimed directly at anyone; they just function as a way of letting others
know what is on one’s mind or what one is currently doing. Similarly,
solutions to problems are posted even if no one requested them directly,
to provide resources for future use and collect feedback on the solution.
However, the texts flowing through IRC are not very persistent. The in-
dividual maintainers occasionally copy and paste parts of conversations
into their private notes, but no systematic archiving takes place.97

There is a different kind of infrastructure in place exactly for this
purpose – the project’s wiki and individual blogs. This infrastructure
provides means for self-documentation, which is an integral part of free
and open source software. This means that problems and their solutions

97 This is, however, project specific. Some projects, like the Ubuntu Linux distribution,
archive their IRC channels and keep the archives accessible from their website.

71Practices of a FOSS project

OBSAH

are recorded and elaborated upon, even when no one requested it di-
rectly. There is a conviction that the most effective way to deal with prob-
lems is to archive them and their solutions publicly. This allows others
(and sometimes the writers themselves after a longer period of time) to
quickly find information or solutions to problems they are facing. Blogs
and wiki pages are better suited for this purpose as they offer more ac-
cessible archiving (through the standard Hyper-Text Transfer Protocol)
where texts are persistent by default (contrary to IRC for example).

Furthermore, blogs and wikis differ in that the first represent simple
web pages written in the standard HyperText Markup Language (HTML),
while the second not only use their its own markup language (which is
eventually translated to HTML), but adds functionality for collaborative
writing and version tracking. Thus, blogs are usually used as a simple
means of archiving and expression of individuals, while wiki serves as
a more “official” source of information about a project. The project’s wiki
contains pages that serve as information resources dealing with common
problems such as how to set up the development environment, how to
use source code management or debugging tools effectively, what the
general architectural model of the developed software is, or who the
main contributors are. An aggregation of such pages creates a pool of
knowledge that can be readily referenced in discussions.

However, a wiki does not work only as a convenient resource for ref-
erencing. This function would probably be served just as well by blogs,
which are easier to establish and run than the whole MediaWiki plat-
form.98 There is more to its functionality that balances the effort. The
differentiating feature is that Wiki pages allow multiple contributors to
share work material while all modifications are systematically recorded
and form a reversible history. This is a result of some of the design princi-
ples with which the platform has been built. These design principles were
proposed by Ward Cunningham, the originator of the initial Wiki Wiki
Web, which served as a model for later wiki packages including Medi-

98 MediaWiki is a software package originally designed by Magnus Manske to run
Wikipedia. However, today it is also widely used in other projects, not necessarily affil-
iated with Wikipedia. As it is licensed under the GNU GPL license, it is widely used in
free and open source software development, where it is common for bigger projects to
have their own wiki. Also, the MediaWiki is not the only software package with which
a wiki can be established. There are numerous other packages, among which MediaW-
iki is probably the most known.

OBSAH

72Practices of a FOSS project

aWiki. Within the design principles, there is a set of claims that interlock
in what could be called “the value of openness”:

Open – Should a page be found to be incomplete or poorly organized, any
reader can edit it as they see fit.
Organic – The structure and text content of the site are open to editing and
evolution.
Observable – Activity within the site can be watched
and reviewed by any other visitor to the site.99

Translated to the design of a software package, the first two principles
mean that there must be a system for freely creating and managing user
accounts. But by using the word “reader” with regard to editing, the im-
plications seem to go further, to allow even those without a user account
to edit pages. This is the case with the biggest project using the MediaWiki
package – Wikipedia. Also, the word “evolution” used in the second prin-
ciple hints at the expectation, that there will be a history behind every
page and that pages will get better over time. Combined with the third
principle, this leads to the design of an archiving function which records
every set of edits, assigns them to a time and an author, and makes them
comparable with every other version of a page. However to be observable
to a full extent, not only must editing be recorded, but also the rationali-
zations behind it. Thus, for every page, there is a place where discussion
is recorded and this represents another dimension of the page’s history.

However, it is interesting to see that Cunningham explicitly states
that some principles, although followed by later designers of wiki pack-
ages, were not his primary concerns. These principles are explicitly for-
mulated as follows:

Trust – This is the most important thing in a wiki. Trust the people, trust
the process, enable trust-building. Everyone controls and checks the
content. Wiki relies on the assumption that most readers have good in-
tentions. But see: [link to a page called Assume Good Faith Limitations]
Sharing – of information, knowledge, experience, ideas, views…100

99 Wiki Design Principles. Accessed: 2014-12-04. Available at: http://c2.com/cgi/wiki?Wi-
kiDesignPrinciples.
100 Wiki Design Principles. Accessed: 2014-12-04. Available at: http://c2.com/cgi/wiki?Wi-
kiDesignPrinciples.

http://c2.com/cgi/wiki?WikiDesignPrinciples
http://c2.com/cgi/wiki?WikiDesignPrinciples
http://c2.com/cgi/wiki?WikiDesignPrinciples
http://c2.com/cgi/wiki?WikiDesignPrinciples

73Practices of a FOSS project

OBSAH

Considering that Wikipedia is seen by many as the hallmark of the culture
of sharing, it is ironic to see the originator of the design principles upon
which it was built to state that sharing was not his primary concern. But
the principle of trust seems to be the problematic point here. The under-
lying assumption that most readers have good intentions explains the
design decision to make wiki pages open for editing by anyone and place
the review process after the editing has been done and published. The fact
that a link to a page discussing the limitations of this assumption is given
right after its explanation is indicative of Cunningham’s reservations
about it. Nevertheless, this principle was followed by other developers
and so the current wiki packages inherited this design decision.

However, the Pitivi wiki has different rules for contribution than
what is standard in Wikipedia, where anonymous users (who do not have
user accounts, but are identifiable by IP addresses) may edit pages. Their
modifications are subject to review and revisions only after they have
been made. This creates conditions in which vandalism and spamming
are possible and may take hold in the time period between editing and
review. Accordingly, vandalism and spamming are cited in the lockdown
policy of the Pitivi wiki as main reasons for restricting the rights to edit
pages:

Fighting spam and vandalism has always been a problem in our wiki, and it
has been particularly tedious in 2010-2011 where a lot of spam consisted
of “throwaway” user accounts made to create lonely pages.

Those pages would typically not be seen by most visitors because they were
not linked from any other pages (except the RecentChanges and Lonely-
Pages special pages), and thus would fly under the radar.

=== Some statistics === Before the new lockdown policy was enforced, in
2011 there were: * 831 registered users… but only ~10 were real/legiti-
mate users! * 1156 pages… but only 108 were real content pages!101

As a result, Pitivi developers reached the entirely opposite conclusion –
that most users do not have intentions and they express it by saying:
“managing accounts is perfectly acceptable and vastly more efficient than

101 Lockdown Policy. Page in the Pitivi wiki. Last edit: 2014-02-22. Accessed: 2014-12-01.
Available at: http://wiki.pitivi.org/wiki/Lockdown_policy.

http://wiki.pitivi.org/wiki/Lockdown_policy

OBSAH

74Practices of a FOSS project

managing spam”. This means that because keeping spam under control
is not possible, it is necessary to manage user accounts, which would
otherwise be entirely up to users. As a result, only users that get in touch
with the Pitivi developers and obtained a user account can edit pages.

Yet there is a reason for going through this trouble to keep the project
wiki running. In most FOSS projects I have dealt with (and Pitivi is no
exception) wiki pages are used extensively for documentation, be it for
users or for developers. Having the MediaWiki platform in place allows
for pooling information from various contributors that, ideally, form
a manual. Furthermore, wiki pages can play a vital role in the prototyp-
ing process. Although I have not really witnessed a wiki being used for
this purpose during my presence in the field, I found several older pages
made specifically for the purpose of developing complex design concepts
(like a plugin system, proxy editing or rendering profiles). These wiki
pages contain a lot of rationalization, examples of how the problem is
solved in other programs and relevant use cases. Often, they also contain
a medium other than digital text as a visualization of how a problem’s so-
lution would appear in the user interface.

Using a wiki for prototyping is possible because of the implementa-
tion of the design principles of openness, organicness and observabil-
ity. The implementation results in the key functionality of collaborative
writing and version tracking, which are necessary for the prototyping
process. It must be clear who made which set of changes, and with what
rationalization. These changes must then be available for others to review,
and make their own sets of changes that could be different from the origi-
nal ones. Prototyping then takes place through this iterative process of
modification (which in this case includes also publication) and review.
In other words, wiki pages contain proposals that other contributors can
review and further develop, retaining their individual authorship even
though the pages are the result of collective effort.

However, all this functionality is necessary only when there are sup-
posed to be more iterations of modification and review. If the aim is to
simply show the design ideas once and collect feedback, developers often
opt for the use of their blog. This allows them to reach a wider audience
than with a wiki page, while presenting the content as their own work. In
other words, blogs usually represent the efforts of individual developers.

Various content management systems (such as Wordpress) are used
for writing and publishing blog content. While these systems support
multiple users, they omit the functionality of revision tracking and are

75Practices of a FOSS project

OBSAH

scarcely used for collaborative writing. Blogs simply have a different
purpose. During my time in the field, the purpose of blogging was ex-
plicitly negotiated when a newcomer who wanted to apply for the Google
Summer of Code102 stipend to work on Pitivi brought that issue up:

Ben: It is necessary to post on a blog about the progress of the proposal
for the GSoC? right?
Steve: Ben, I don’t mind if you don’t
Steve: And I think others agree
Steve: What we want is progress, not blogging about lack of progress :)
Ben: ;)
Ben: that’s better
Steve: (not saying you would not progress, just that I preferred working to
blogging for my GSoC and I don’t think it ever hurt anyone :)
Eric: we’re programmers, not writers haha
Steve: this :)
…
Ted: Ben, though I would like to strongly encourage you to blog
…
Ted: we can’t force you though
…
Ted: I mean even one paragraph or two per week or two weeks, just to
keep the pitivi and gnome communities informed, and to get feedback etc.
Ted: no need for a whole book
Steve: yeah Ben the thing is you would get a GSoC through GNOME, and
they theoretically require your blogging
Ted: but then, I say that as the person who is pretty much the only one in
the entire pitivi team to blog
Ted: (excluding the new fundraiser blog posts)
Steve: blogging is good for two purposes IMO : technical stuff (always

102 Google Summer of Code is a stipend program that annually supports students
working on open source software. The general idea of the stipend program is to teach
students practical skills through mentoring, while the students work to contribute to
free software. But it has more far reaching consequences than this simple exchange.
Many students continue to contribute to the projects even after the stipend is over. In
the case of Pitivi, at least two of the maintainers initially got involved as participants
in the stipend program. Therefore, by attracting students and developing successful
strategies when asking for the stipend, some FOSS projects are able to gain new devel-
opers periodically.

OBSAH

76Practices of a FOSS project

happy to find a blog post about specific issues I’m also facing)
Steve: and marketing
… Ben: more “marketing” I think
Steve: what do you mean ?
Ben: because I don’t know if I’m wrong, but I really think that there are
many USERS who want tutorials, know about new features… I think blog-
ging is more for marketing in the case of Pitivi.
Steve: Ben, I don’t agree
Ted: being able to explain a technical implementation or problem is a valu-
able skill
Ted: blogging is a way to demonstrate that skill
Ted: and this helps your career
Ted: (I’m just saying :P)
Steve: Well it also helps other hackers, which is a key argument too
Ted: yes
Ted: and also, I’m sure there are semi-savy fans/users out there who love
to read about progress on projects like pitivi, but don’t have time (or skills)
to sit around in our IRC channel and read everything that’s going on
Ted: you gotta admit it’s sometimes pretty crazy technical in here
Steve: Well I do hope so :)
Ben: I think marketing is powerful. That gives you users ;)
Steve: Ben, I said both were

From the first part of the conversation, it is clear what the priority is – it
is more important to work than to blog about it. This position is summed
up in the expression “we’re programmers, not writers”. However, as Ted
(who declares himself to be the only one within the Pitivi team to blog
consistently) joins the conversation, it shifts toward identifying the pur-
poses of blogging. First, it is the “technical stuff” which may help others
in finding solutions to problems they are facing – “it helps other hackers”
(even Steve, who was initially skeptical admits he is “always happy” to
find such blog posts). The value of this type of blog post to others facing
the same problem is that it spares them the effort of investigating the
problem and creating their own solution (while also demonstrating the
technical skills of the post’s author).

In such a self-documenting environment, solving problems often
amounts to finding an appropriate blog post and implementing the so-
lution described. In this way, blog posts create a reservoir of informa-
tive instruction materials which were written by knowledgeable authors

77Practices of a FOSS project

OBSAH

and which can be picked up and utilized by others. Obviously, solving
a problem and writing a blog post about it requires higher level of techni-
cal knowledge than finding the post and applying the prepared solution.
In this way, actors can perform actions that are beyond their technical
competence (for example, by copy-pasting commands from a blog to
terminal without knowing precisely what the commands will do). This
means that blog posts do not necessarily spread knowledge. Knowledge
would be transferred if the recipient learned to understand the problem
and its solution in such a way that would make it possible to re-apply it
in different circumstances. Blog posts are often not detailed enough to
allow this, but even if they are not, they may serve as initial impulses to
investigate an issue further.

The second purpose, “marketing”, is associated with blog posts that
describe the progress of the project. New versions are announced, new
features are demonstrated and work in progress is evaluated. Blogging
about work in progress can be seen as one stage of the “release early,
release often” imperative. It shows others what the aims are and what can
be expected in the future, and it is also a form of collecting feedback on
the work even when the source code is not yet released. This is aimed pri-
marily at users (or developers in other projects) that do not tune in into
the developer’s communication channels to experience what is going on
firsthand, but wait for what the “blogosphere” brings them.

The blogosphere, in this case, is embodied in a blog aggregator called
Planet Pitivi. It is the one place that displays blog posts from Pitivi de-
velopers and informs anyone interested about what is new and what is
going on in the project. There is also an aggregator called Planet GNOME
which displays blog posts from the wider GNOME community; to reach
a broader audience, some of the Pitivi developers also feed their blogs
to this aggregator. The “aggregation” is an arrangement in which texts
are automatically redistributed from one place (the author’s blog) to
another (the aggregator). This arrangement is based on a mutual agree-
ment between the administrators of a planet and the author of a blog
and on the condition that the author meets certain requirements. Pitivi
is a small project and acceptance to the aggregator is based on an indi-
vidual agreement. However, GNOME, being a much bigger community,
has the requirements spelled out explicitly:

We want readers of Planet GNOME to read and care about most of your
posts.

OBSAH

78Practices of a FOSS project

Some posts should be relevant to the GNOME community, either because
they’re related to GNOME, some underlying projects (like freedesktop.org
projects), some technologies using GNOME, etc. or because it’s a topic most
people in our community care about, like freedom.103

The requirements are primarily related to the relevance of the blog posts
for the audience. Blogging about projects related to GNOME (be it up-
stream or downstream) or about GNOME directly obviously meets the
requirements, regardless of whether the posts are more about technical
issues or “marketing”. What is new here are the topics “most people in our
community care about”, of which only one example is given – “freedom”.
This common denominator has a historical background. It is part of
common knowledge within the community that the GNOME desktop
environment was founded at least in part because KDE (at the time, an
established free and open source desktop environment) relied on the Qt
toolkit, which, at that time, had a proprietary license. Therefore, GNOME
filled the need for a desktop environment as independent of proprietary
source code as possible by relying on the GTK+ toolkit, which has been
using licenses by the Free Software Foundation from the very beginning.
Therefore, it is no surprise to find such emphasis on the value of freedom
permeating GNOME Foundation documents and being used for modera-
tion of its blog aggregator. That GNOME operates with a certain vision
can be seen, apart from licensing choices, in its Code of Conduct:

GNOME creates software for a better world. We achieve this by behaving
well towards each other.

Therefore this document suggests what we consider ideal behavior, so you
know what to expect when getting involved in GNOME. This is who we are
and what we want to be. There is no official enforcement of these principles,
and this should not be interpreted like a legal document.104

However, it is indicative that the “better world” which GNOME strives
for is nowhere defined. There are several pieces of “advice” for individual

103 Planet GNOME Guidelines. Last edit: 2014-04-20. Accessed: 2014-12-04. Available at:
https://wiki.gnome.org/PlanetGnome.
104 GNOME Code of Conduct. Last edit: 2013-12-04. Accessed: 2014-12-04. Available at:
https://wiki.gnome.org/Foundation/CodeOfConduct.

https://wiki.gnome.org/PlanetGnome
https://wiki.gnome.org/Foundation/CodeOfConduct

79Practices of a FOSS project

OBSAH

behavior in the Code of Conduct (e.g. be respectful and considerate, be
patient and generous, assume people mean well, try to be concise, etc.)
but no image of what the world should look like in any of the documents.
The utopia is not explicitly elaborated upon. It is left to the individual
contributors to fill the words with meaning.

However, the environment that GNOME constitutes does not allow
for just any interpretation of the words “better world”. What GNOME
does is provide infrastructure (legal and technical) for all the smaller pro-
jects it overarches. This infrastructure is specifically suited for the free
and open source model of software development. Thus, the combination
of this type of infrastructure with the words “software for a better world”
hints at a world view according to which the better world is not only
achieved, but also constituted by free and open source software. This
meaning is implicitly present because of the infrastructure and there is
no need to explicitly specify it.

Apart from insisting on one development model (which gains a moral
valence in this context), there is a remarkably wide maneuvering space
for various political positions. This “political agnosticism” is rooted in
the classical free software license – the GNU General Public License
(GPL). Of the three basic rights – use, modification and redistribution –
this license focuses solely on the third one, while leaving the first two
completely unrestricted. Furthermore, redistribution is allowed just by
meeting the requirements of applying the original license to the deriva-
tive work and marking clearly any modifications that have been made to
the original work. A few more supplements can be made concerning the
author’s liability or identity, but all additional terms are considered to be
“further restrictions” which are explicitly disregarded:

If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restric-
tion, you may remove that term. … You may not impose any further restric-
tions on the exercise of the rights granted or affirmed under this License. For
example, you may not impose a license fee, royalty, or other charge for exer-
cise of rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that any patent

OBSAH

80Practices of a FOSS project

claim is infringed by making, using, selling, offering for sale, or importing the
Program or any portion of it.105

Licensing fees and patent claims are stated as the most immediate exam-
ples of further restrictions, but this aspect of the license also covers for
example use for commercial purposes. If the authors decide to license
their work under the GPL, they may not further restrict the conditions
for its use or redistribution. The software may be used by big corpora-
tions just as well as the unemployed or it may be used by activists just as
well as the undemocratic regime they are fighting against. In this way, the
license is “agnostic” – it explicitly denies the possibility of introducing
any further restrictions than those stated. As a Linux kernel maintainer,
Linus Torvalds elaborated upon this while he was discussing the differ-
ences between version 2 and version 3 of the GPL:

For example, the GPLv2 in no way limits your use of the software. If you’re
a mad scientist, you can use GPLv2′d software for your evil plans to take
over the world (“Sharks with lasers on their heads!!”), and the GPLv2 just
says that you have to give source code back. And that’s OK by me. I like
sharks with lasers. I just want the mad scientists of the world to pay me
back in kind. I made source code available to them, they have to make their
changes to it available to me. After that, they can fry me with their shark-
mounted lasers all they want.106

Now it becomes clear why the expression “better world” from
GNOME’s Code of Conduct is nowhere specified. As the GNU licenses
(GPL and LGPL) are used consistently across projects that GNOME asso-
ciates, it is not surprising that it would apply a similar sort of agnosticism
in its documents. Given the infrastructure GNOME provides, contribu-
tors are free to interpret what a better world is and translate this meaning
into their willingness to spend hours of volunteer work, or invest in de-
velopment as a company. Thus, we can observe a mix of specificity (to

105 GNU General Public License. Text of the third version of the license published on the
website of the GNU project. Published 2007-06-29. Accessed: 2014-11-16. Available at:
http://www.gnu.org/copyleft/gpl.html.
106 Linux Licensing. Interview with Linus Torvalds published by Forbes.com. Published:
2006-05-03. Accessed: 2015-04-09. Available at: http://webcache.googleusercontent.
com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-li-
censing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu.

http://www.gnu.org/copyleft/gpl.html
http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu
http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu
http://webcache.googleusercontent.com/search?q=cache:RaeC8J8_0isJ:www.forbes.com/2006/03/09/torvalds-linux-licensing-cz_dl_0309torvalds1.html+&cd=1&hl=cs&ct=clnk&gl=cz&client=ubuntu

81Practices of a FOSS project

OBSAH

a point of implementation) with regard to infrastructure aimed at a par-
ticular software development model, and ambiguity concerning further
values and motivations. Therefore, it is the term infrastructure (as a value
and as a technological object) that differentiates the spaces where knowl-
edge is channeled from their environment.

4.3 Debugging

Bugzilla is a database of issues (errors or feature requests) – commonly
addressed as “bugs” – that were reported for a given program. Reports
can be made by anyone who is willing to make an account in Bugzilla.
This mostly involves dedicated users, testers of the given program or its
developers. Because reports often come from actors who are unfamiliar
with the project’s development or they focus on other areas inside the
project, the database has to be regularly cultivated and organized. The
relevant practice is called bug triaging and it involves determining the
bug’s severity, checking if the bug is really related to the given program,
checking for bug duplicates, and checking if the provided information
is correct and sufficient. Once organized and prioritized by bug triagers,
the database basically serves as a large scale to-do list for all contributors.

For newcomers, filing a bug is a rather lengthy process that requires
submission of information that end users are normally not aware of, cre-
ating a barrier to feedback. However, without background information on
the version of the program that exhibits the bug, on the environment the
program runs in, or without a good description of the bug itself, the bug
report has little value. Filling in the background information on program
version and environment gets rather straightforward after reporting one
or two bugs. The ability to generate a good description of a bug takes
a longer time. This is so because when dealing with non-trivial bugs, it is
often unclear what triggers them and which component is their source.
Therefore, prior to filing a bug report, a good deal of effort needs to go
into a practice called debugging.

Debugging is an investigative activity that gets harder with increasing
code complexity and with a growing number of libraries that a program
is dependent on, because a bug can be hiding in one of the dependen-
cies, not the program itself. At the time of writing, Pitivi itself has around
20 000 lines of code (not counting blank lines and comments), but
GStreamer, its main dependency, has almost 1.5 million lines of code.
Therefore, identifying the source of an error is no straightforward proce-

OBSAH

82Practices of a FOSS project

dure. In a discussion, one of the project members expressed it in the fol-
lowing way: “the trick is always to find a way to simplify the cause of the
bug and steps to reproduce to the maximum, it’s somewhat of an art ;)”.

By using the word “art” the speaker points to the fact that there is
no precise set of rules that, if followed, would guarantee successful de-
bugging. Rather, it is a process that relies heavily on the experience and
knowledge of the person doing the debugging. However, the knowledge
and experience do not have to be individual. The IRC channel is often
used to share the results of debugging efforts and to discuss what the
possible culprit may be. This is possible due to debugging tools that are
able to translate an error into a stream (often very long) of digital text
expressing what is going on in the internals of the debugged program. In
this way, the user description of errors is substituted with a text having
common formal properties.

Furthermore, the simplification aims at identifying steps that are nec-
essary to trigger the bug. These steps may involve performing specific op-
erations or handling a specific file. In the latter case, it is important that
the file is attached to the bug report or shared in some other way with the
maintainers. Once the simplification is made, one can often guess which
component is responsible for the error. But to get more information on
what is wrong inside the component a special program is needed.

The standard tool for debugging is called GNU Debugger (GDB)
which is used to pinpoint the part of source code responsible for an
error. First, the debugger has to be pointed to the program or library
that presumably causes the error. The ability to make an informed guess
in this area assumes knowledge about the program’s architecture and its
internal workings. When pointed to a running process, GDB functions
like an observer trying to record everything that is going on with it:

Ben: #~|@¿~~! Segmentation fault
Steve: gdb is your friend :)
Ben: Steve: how do I use gdb when I compile the source?
Steve: Ben, not sure I understand your question
Steve: How do you trigger the segfault?
Ben: I don’t know how to debug something big as Gstreamer… I’ve
only used gdb for some single files
Steve: Ben, what do you do to create the segfault?
Ben: I run the command
Ben: ges-launch-1.0 “multifile:///home/nick4/Pictures/Trash/numbers/%d.

83Practices of a FOSS project

OBSAH

png?start=100&end=230&framerate=1/1” 0 5
Steve: OK then run:
Steve: gdb –args sh ges-launch-1.0 “multifile:///home/nick4/Pictures/
Trash/numbers/%d.png?start=100&end=230&framerate=1/1” 0 5
Steve: when the segfault kicks in, you will type bt
Steve: press Enter
Steve: and see the backtrace of the thread that segfaulted
Steve: Ben, ^
Ben: Steve: thanks
Steve: Do you have the backtrace?
Ben: yes
Steve: Cool
Steve: segfaults are usually pretty straightforward to fix, be happy
it’s not a race condition / deadlock ;)

Using GDB in this way generates a text file that is called backtrace or
stack trace. At minimum, the stack trace identifies all functions (and li-
braries they are located in) that were called up to a point when an error
occurs. At best, the stack trace lists exact line numbers inside concrete
files, identifying precisely parts of source code that were running before
the bug occurred. To render a detailed stack trace, a special debugging
version of the tested program usually needs to be installed, one that
allows for inspection of the running code (these versions are created
by a different compilation process, thus pointing to the relationship
between compilation/black-boxing, and debugging – its reversal). In this
way the black-boxing done by compilation can be temporarily reversed
and the internals of a running program exposed. To fully grasp the role
debuggers play, consider the forms a program has before and after com-
pilation:

 def shutdown(self):
 if Pitivi.shutdown(self):
 self.gui.destroy()
 self.mainloop.quit()
 return True
 return False

The above is a part of the Pitivi source code written in the Python pro-
gramming language; the snippet represents a definition of the shutdown

OBSAH

84Practices of a FOSS project

procedure. What follows is what one sees when the compiled Pitivi
package is opened with a text editor:

^?ELF^B^A^A^@^@^@^@^@^@^@^@^@^B^@>^@^A^@^@^@ø(@^@^@^
@^@^@@^@^@^@^@^@^@^@^Hw^@^@^@^@^@^@^@^@^@^@@^@8^
@^H^@@^@^]^@^\^@^F^@^@^@^E^@^@^@@^@^@^@^@^@^@^@@^@
@^@^@^@^@^@@^@@^@^@^@^@^@À^A^@^@^@^@^@^@À^A^
@^@^@^@^@^@^H^@^@^@^@^@^@^@^C^@^@^@^D^@^@^@^@
^B^@^@^@^@^@^@^@^B@^@^@^@^@^@^@^B@^@^@^@^@^@^
\^@^@^@^@^@^@^@^\^@^@^@^@^@^@^@^A^@^@^@^@^@^@^
@^A^@^@^@^E^@^@^@^@^@^@^@^@^@^@^@^@^@@^@^@^@^@^
@^@^@@^@^@^@^@^@ôl^@^@^@^@^@^@ôl^@^@^@^@^@^@^@^@
^@^@^@^@^@^A^@^@^@^F^@^@^@^@p^@^@^@^@^@^@^@p

This is, however, not what a computer operates with. This is a result of
a text editor taking a binary code and translating it into signs. These seem
to be random because it is no longer the binary code of a text, but of
a program. To see what the computer operates with, one must access the
contents of its memory:

009c000  0066  0138  0000  0000  3801  0800  0000  0000
009c010  0008  0b72  1003  001e  0200  0000  0001  0100
009c020  0001  5850  0124  41ed  0000  0000  ed41  0001
009c030  0000  0000  0100  0000  0000  0000  0000  03e8
009c040  0000  0000  e803  4654  011a  720e  030b  1810
009c050  0033  0b72  1003  1518  7200  030b  1a10  0004
009c060  4d4e  0105  0002  0066  011e  0000  0000  1e01
009c070  0800  0000  0000  0008  0b72  1003  001e  0200
009c080  0000  0001  0100  0101  5850  0124  41ed  0000
009c090  0000  ed41  0001  0000  0000  0100  0000  0000
009c0a0  0000  0000  03e8  0000  0000  e803  4654  011a
009c0b0  720e  030b  1810  0015  0b72  1003  0c18  7200
009c0c0  030b  1a10  0004  4d4e  0105  0004  0088  0d47
009c0d0  0000  0000  470d  0b64  0000  0000  640b  0b72
009c0e0  1003  001e  0000  0000  0001  0100  4713  4f4e

85Practices of a FOSS project

OBSAH

The memory contents take the form of a structured set of hexadecimal
numbers.107 The first column denotes a memory address, while the rest
of the numbers in a row are representations of binary information. Each
pair of hexadecimal numbers represents a binary byte.108 This is the
closest we get to see ones and zeros, the mythical building blocks of the
digital. We can see that at this point (when inspecting the contents of
a compiled program in a binary form), the logic according to which signs
are organized is closer to the performance of voltage differences that
hardware operates with than a language intelligible for humans. Hence
the role of debuggers, which make it possible to inspect the contents of
running binaries in a more intelligible form. Once an error is debugged
in this way, a valuable bug report can be filled.

The central part of every bug report is a description of the issue. In
the description, three things should be articulated: the expected behavior
of the program, its actual behavior and steps to reproduce the bug. It is
essential for others to be able to reproduce the bug for two reasons. First,
newly added bug reports are automatically considered unconfirmed.
A bug report has to be reproduced by at least one more contributor in
order to be confirmed. Only then it is considered for further investiga-
tion and fixing. Second, in order to fix the bug, other contributors usually
need to reproduce the bug in order to gain additional information and
insight into the issue:

Eric: Why do I get this? [link to an error message]
Roy: Eric, That looks pretty wrong, how did that happen?
Eric: I click a clip with two Box Filter effects
Roy: Eric, Can you share the project so we can debug it?
Roy: (and possibly open a bug report)
Eric: which MTS did I send you last time?
Eric: found the video, but sorry, cannot reproduce with a new project
Roy: Eric, So you can’t reproduce at all?
Eric: nope, I re-added the filters and it works fine now

107 While the traditional decimal numeral system operates with a basic set of symbols
0 1 2 3 4 5 6 7 8 9, the basic set of hexadecimal symbols is 0 1 2 3 4 5 6 7 8 9 a b c d e
f so instead of orders of ten, it operates with orders of sixteen.
108 This can be so because the number of states two combined hexadecimal digits can
acquire (162=256) is equivalent to the number of states eight combined binary digits
(one byte) can acquire (28=256). For example, 4d in hexadecimal (which is 77 in deci-
mal) means 01001101 in binary.

OBSAH

86Practices of a FOSS project

Roy: Erg, that sounds like a bug in the effect priority manage-
ment but I would need a way to reproduce to fix it

Bug reports provide public space for discussion of the problem, evalua-
tion of alternative solutions, or assignment of severity and responsibil-
ity. Discussions often focus on identifying the problematic component,
and evaluation often takes into consideration how similar problems are
solved in other programs. Responsibility is divided among the maintain-
ers depending on their specialization within the project. Severity repre-
sents a continuum with blocker bugs on one side and enhancements on
the other. Blocker bugs represent the highest severity issues that need
to be fixed before the next version is released. They are mostly regres-
sions since previous versions or bugs that prevent testing of other issues.
However, the decision on classifying a bug as blocker is never final. The
bug can be reclassified to non-blocker or the version that it blocks can be
raised so that it does not stand in the way of releasing the next version.

This pattern can be illustrated by bug 570118, which was filed in Feb-
ruary 2009 and classified as blocker after a small discussion. Before the
release of Pitivi version 0.13.1 in May 2009, its severity was demoted
to normal so that the release would not be blocked by something that
“would be a nice addition”. After the May release, the bug’s severity was
promoted to blocker and again demoted to normal before the release
of version 0.13.3 in September 2009. Eventually, the bug was labeled
an enhancement and after more than three years of no activity (except
for minor adjustments made by a bug triager) in the bug report, it was
resolved as “won’t fix” with the justification that the solution would
“needlessly complicate things, and nobody else actually requested this
feature”.

This fate is shared by many low severity bugs that are largely ignored
by the core developers. They expect either the reporter (“scratching his/
her own itch”) or some other occasional contributor to submit a patch.
As lack of manpower seems to be a constant condition, core developers
rarely find the time to pursue low severity bugs. However, they have the
power to demote bugs that they see as low priority and that would stand
in the way of the next release. In this way, bug severity can be the subject
of a tug of war among developers and bug reporters or other interested
contributors. This was the case with bug 570118 which was promoted
twice by its bug reporter (who also happened to be a bug triager) and
repeatedly demoted by a core developer. Eventually, the reporter agreed

87Practices of a FOSS project

OBSAH

and labeled the bug report an enhancement request and after some time
closed it.

In this context, submitting a bug report for a feature that is considered
low severity from the start is considered futile effort. As one of the main-
tainers put it in a discussion: “the problem is we don’t want to add more
surface for bugs with new features unless we have a very good reason”.
Filing a bug report represents an impulse for maintainers to react and
it simultaneously creates public space (a “surface”) for anyone else to
weigh in. In contrast to IRC, bug reports represent an asynchronous
form of communication that persists. This means that bug reports can
mobilize a broader audience than local and temporal chat discussions:

Brian: I’m working on sth that is not a bug, and it’s not in Bugzilla as well.
Should I create a new bug?
Ted: Brian, it would be nice yeah
Ted: it gives a public way to develop the idea
Ted: and something to refer to
Brian: Ok, I’ll do it. Thanks again, Ted!

By providing a “public way to develop the idea”, bug reports consti-
tute a space for prototyping. This is more apparent in reports that are
feature requests. Within them, comments often involve descriptions of
how a given feature is handled in various other programs and argumen-
tation on which option would be best to pursue. The interesting thing
is that general agreement is seldom reached and an official decision
seldom made. After some discussion, the prototyping process just moves
to a new stage in which a self-assigned contributor attempts to imple-
ment the feature by creating a new branch in the source code history.
The ultimate design decisions then lie in the hands of the contributor. It
is the contributor who spends time and effort on the problem and this is
compensated by the power to decide. However, this power is balanced by
the existence of the review process. The contributors either have to align
their work with the theory that the maintainers hold, or make an argu-
ment convincing enough to get them to go out of their way. In either case,
the contributor is bound in his design decisions by negotiations with the
project’s maintainers.

Bug reports can also serve a purpose even when they do not result
in a patch. They represent persistent traces that can be referenced (every
bug report and comment has a unique HTML address) and that serve as

OBSAH

88Practices of a FOSS project

a signal that the issue is known, that it is (or it is not) being worked on,
and shows the progress that has been made on the issue. Thus repeated
inquiries about the problem that keep the maintainers from other work
and make them explain the problem multiple times are avoided. Also,
by showing if anyone is working on a particular issue, bug reports help
in avoiding parallel efforts that may result in sensitive situations where
there are two fixes for one issue and the maintainers have to pick one
over the other, preferably without offending either.

4.4 Revision Tracking

Git is a source code management system used to track revisions of
source code. T﻿his means that it is able to track changes in a given text
file and create diffs – detailed representations of changes comparing two
versions of a text file. As such, Git and other source code management
systems are able to track only plain text files. It is the standard form in
which text is stored in software development.

Git differs from older version control systems in that it is distributed.
This means that there is not one central repository created and operated
by project maintainers from which source code is downloaded and its
modified versions are uploaded back, as was the case with centralized
version control systems. Creating repositories and modifying the source
code they contain is an activity that is relegated to all users and so reposi-
tories can be “cloned” freely. However, there is usually one main reposi-
tory which contains reviewed commits and represents the official state
of the source code. Write access to the main repository is still restricted
to project maintainers and any contribution must be reviewed by one
of them before being included in the main repository. Therefore, write
access represents109 the main hierarchical distinction between maintain-
ers and the rest of the developers.

However, the distributed source code management system was de-
signed to mitigate the effects of this hierarchical break. Anyone with the
abilities to do so can clone the main repository into their own personal

109 There are also other indicators of the maintainer position, like administrative
access to the project’s web page, having an account on the project’s Wiki or having
maintainer rights in Bugzilla. All have in common that they provide administrative
access to a part of the project’s infrastructure. However, commit access to the main
repository is the key distinctive point as it gives access in an area central to software
development: source code management.

89Practices of a FOSS project

OBSAH

repository and start modifying it without asking maintainers for permis-
sion. One can keep piling up commits in a personal repository as long as
desired, and once satisfied with the outcome, the contributor can dem-
onstrate that the modified version performs better in a certain respect.
This provides an incentive for maintainers to review and appropriate the
commits into the main repository. Thus, the distributed code manage-
ment system is labeled as “truly open” and “meritocratic” in the Pitivi
wiki. The wiki page also links to a video of Linus Torvalds (the originator
of Git) describing the advantages of distributed source code management:

Because you have a central repository means that everybody that works
on the project needs to write to the central repository. Which means that
since you don’t want everybody to write into the central repository, because
most people are morons, you create this class of people who are ostensibly
not morons. (…) So this whole commit access issue (…) is a huge psycho-
logical barrier and causes endless hours of politics in most open source pro-
jects. If you have a distributed model, it goes away. Everybody has commit
access; you can do whatever you want to your project. You just get your own
branch, you do great work, you do stupid work, nobody cares. It’s your copy,
it’s your branch. And later on, if it turns out you did a great job, you can tell
people: hey, here’s my branch and by the way, it performs ten times faster
than anybody else’s branch so, how about pulling from me. And people do,
and that’s actually how it works and we never have any politics. That’s not
quite true, but we have other politics and we don’t have to worry about the
commit access thing. And I think this is a huge issue and that alone should
mean that every single open source system should never use anything but
a distributed model, you get rid of a lot of issues.110

In his talk, Torvalds is hyperbolic: everybody has commit access. This is
true with regard to the cloned personal repositories, but not for the offi-
cial main repository of a project that is still managed only by maintainers.
By using Git, the hierarchy is maintained but contributors gain a better
position to demonstrate, argue and persuade maintainers to include
their commits. This is so because the individual repositories represent

110 Tech Talk: Linus Torvalds on Git. Video of a talk published by Google on Youtube.com.
Published: 2007-05-14. Accessed: 2014-10-06. Available at: http://www.youtube.com/
watch?v=4XpnKHJAok8#t=18m05s.

http://www.youtube.com/watch?v=4XpnKHJAok8#t=18m05s
http://www.youtube.com/watch?v=4XpnKHJAok8#t=18m05s

OBSAH

90Practices of a FOSS project

a means of publishing111 work on an individual’s behalf. The modified
source code is publicly available through a personal repository. Thus,
when arguing about its quality, the sides are able to point directly to par-
ticular expressions on particular lines in particular files. This makes pos-
sible discussing the modifications with precise references, which could
be described as “talking the code” instead of “talking about the code”.
Moreover, the modified cloned source code could be compiled to an in-
dependent version of the program in order to be tested. Under these con-
ditions, there is less space for what Torvalds calls “politics”, that is, the
challenging of power relations generating a large communication load.

During development, personal repositories serve as prototyping
spaces. Suppose we have a contributor whose name is Paul, he writes
some new code, pushes it to his individual repository, gets feedback
during review and amends his code accordingly. Then, the code is ap-
propriated to a personal repository of the reviewer, where further revi-
sions can be applied. At this stage, every revision the reviewer makes is
discussed with Paul. Finally, after reaching a satisfactory state, the code
is pushed to the main repository. After that, Paul resets his development
branch and synchronizes it with the master branch of the main reposi-
tory. This creates a shared reference point from which further contri-
butions can be made. Thus, development using a distributed source
code management system is an iterative process balancing divergence
(branching out with new modifications) and integration (review and ap-
propriation into the main repository).

Using Git involves first and foremost dividing work into units called
“commits”. These units denote logical wholes so that when it is necessary
to revert a certain modification, a corresponding commit can be identi-
fied and edited.112 See an example below (lines beginning with “-” are to
be removed and lines starting with “+” are to be added):

111 However it does not mean that anything the contributors do is necessarily public.
All work initially takes place on a private local machine and only afterwards may be
pushed into a server-hosted public repository. This allows contributors to control what
stays private while making publication an option achieved by executing one command.
112 An example to explain what the expression “logical wholes” means in this context:
suppose I use Git to keep a history of changes when writing this text and I make
a commit that consists of adding two paragraphs to the theoretical section. However,
to form a logical whole, the commit should not only consist of those two paragraphs,
but also add any new references (to the appropriate section) they introduce. This way,
if I later decide to remove the commit, no other editing is necessary.

91Practices of a FOSS project

OBSAH

commit 128461ff94c38c67d392d915b0d002e903379920
Author: Tomas Karger <tomkarger@gmail.com>
Date: Tue May 6 17:24:33 2014 +0200

 help: adjust see also links

diff --git a/help/C/cheatsheet.page b/help/C/cheatsheet.page
index 1084857..0a98e47 100644
- - - a/help/C/cheatsheet.page
+++ b/help/C/cheatsheet.page
@@ -6,7 +6,6 @@
 <info>
 <link type=”topic” xref=”index”/>
 <link type=”seealso” xref=”movearoundtimeline”/>
- <link type=”seealso” xref=”trimming”/>
 <revision pkgversion=”0.16” version=”0.1” date=”2012-09-03”
status=”complete”/>
 <credit type=”author”>
 <name></name>
diff --git a/help/C/keyframecurves.page b/help/C/keyframecurves.page
index fea14cf..4eeebb2 100644
- - - a/help/C/keyframecurves.page
+++ b/help/C/keyframecurves.page
@@ -5,6 +5,8 @@

 <info>
 <link type=”guide” xref=”index#timeline”/>
+ <link type=”seealso” xref=”usingeffects”/>
+ <link type=”seealso” xref=”transitions”/>
 <revision pkgversion=”0.92” version=”0.2” date=”2014-03-13”
status=”complete”/>
 <credit type=”author”>
 <name></name>
diff --git a/help/C/presets.page b/help/C/presets.page
index ad61a69..6c937d8 100644
- - - a/help/C/presets.page
+++ b/help/C/presets.page

OBSAH

92Practices of a FOSS project

In other words, commits should be conceived in such a way that the Git
history is “atomic”. This requires planning and discipline in work defining
clearly what the current task is and what a commit will constitute, because
Git monitors every modification that is made to the project files. The effort
put into structuring Git history is then balanced by the fact that the history
is fully reversible. Furthermore, it provides information on authorship,
time stamps and a detailed comparison of files before and after every
modification, which is essential for review. Still further, commits can be
clustered into branches that provide isolated spaces for safe experimenta-
tion.113 However, as my field notes indicate, grasping all the complex func-
tions of this tool may not be a trivial matter for a newcomer:

Looked at my repository today and I realized that the Git history, if not per-
formed properly, is useless. I think I will have to delete most of the commits
and edit some through interactive rebase to get some sense out of it.

Now that I know rebase and amend I feel more empowered because I can
fix whatever mistake I make in the future. Until now, everything was stored
in the history and it was beginning to look messy and unuseful. The history
is not necessarily what exactly happened, it is revisable and it is revised to
serve a purpose.

However, for a seasoned developer, the impression may be very different:

Therefore, I’ll say that Git is great because it provides version control in
a very non-intrusive way, and because it provides version control very easily
for individual projects, too. […] You don’t have to be connected to the Inter-
net, you don’t have to setup a server, you don’t even need a separate direc-
tory. You don’t need to tell the world in advance what you’re doing.

113 I discovered the full utility of branching once I realized that switching from one
branch to another means that the working files change literally under my own hands
as different commits get applied. This feature allows for having several versions of
a file available in a repository without the need to have several distinct copies, and
all the while detailed line-to-line comparisons of the branched versions can be sum-
moned.

93Practices of a FOSS project

OBSAH

“git init” or “git checkout -b” are enough to start a project or a feature, and
enjoy version control from the very beginning. I think that this leads to code
that is better and more maintainable.114

For this developer, the tool is “non-intrusive” by lowering the require-
ments for establishing version control for individual projects. All that is
needed is to have Git installed and execute one command. Such lowering
of requirements may lead to abandoning the practice of starting version
control only when a project is sufficiently large or is being published.
Instead, Git encourages the application of version control from the very
beginning of the development process. As a result, the planning and dis-
cipline associated with committing modifications is also present from
the beginning, avoiding the typically very large initial commit which ag-
gregates (and thus obfuscates) all changes made before version control
was applied. This should result in more maintainable code, in the sense
that commit discipline is enforced at all stages of development and can
be observed retrospectively.

As I point out in my field notes, Git functions more like a tool for
work coordination than like an archive that records what exactly hap-
pened. However, some of its features can be considered to perform ar-
chiving functions. For example, if someone gets interested in a certain
part of the code, Git can (through its blame command) provide informa-
tion on who was the last one to edit that part. Furthermore, commits can
be browsed as they were made to a branch; they can also be filtered by
author or searched for a specific expression contained in the log mes-
sages attached to them. Every commit also has a unique identifier for
referencing.

Now to the features that serve the purpose of work coordination. If
two developers, working in parallel, edit the same line of code, Git will
generate a conflict and guide one of them in its resolution. This means
that after announcing a conflict, Git will open a text editor showing the
modifications. The lines that were changed by both developers appear in
three versions – the original one, the one modified by developer A and
the one modified by developer B. It is then up to the human operator to

114 Git Success Stories and Tips from KVM Maintainer Paolo Bonzini. Interview published
by Linux.com. Published: 2015-04-07. Accessed: 2015-04-08. Available at: http://www.
linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-
from-kvm-maintainer-paolo-bonzini.

http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini

OBSAH

94Practices of a FOSS project

pick appropriate parts from the three versions and merge them into the
correct result, a fourth version that is saved as the conflict resolution.

If a developer needs to edit a commit which has been in the mean-
time covered by several other commits, Git can temporarily revert those
commits to get to the desired one. Through this operation, Git moves
back in history to achieve a state when some commits are not yet applied.
Then the developer is free to amend the current commit at will. When this
is done, Git re-implements all reverted commits on top of the edited one
as if it had been like that all along.

Such revisions of source code history are usually made only in the
personal repositories of contributors, because a revision in the main re-
pository would immediately change the reference point against which
everyone else makes their modifications, leading to many conflicts, and
making subsequent integration of contributions problematic. Because of
that, changes in the main repository are made only by submitting more
commits. Personal repositories, on the other hand, constitute a safe
space for experimentation, as anything can be reverted or modified. This
is probably the most important implication of the distributed nature of
Git: with individual repositories, developers get their own self-sufficient
space to develop and refine their modifications, that is, to branch out of
the official version in the main repository and still enjoy the benefits of
version control. As one project maintainer remarks:

Instead of having a single repository that everyone feeds from and into,
everyone now has their own repository, their own branches. The meaning of
branch changed. It’s so cheap now.115

The ability to version control a patch created outside of the main reposi-
tory was not something that other version control tools could provide at
the time Git was created. This meant that large contributions were dif-
ficult to review because they could not be dissected into smaller parts
and the divergence between the patch and the development in the main
repository that took place while the patch was being written was not
systematically tracked, possibly leading to conflicts between the patch

115 Git Success Stories and Tips from Ceph Creator Sage Weil. Interview published by Linux.
com. Published: 2015-04-13. Accessed 2015-04-16. Available at: https://www.linux.com/
news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-
creator-sage-weil.

https://www.linux.com/news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil
https://www.linux.com/news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil
https://www.linux.com/news/featured-blogs/200-libby-clark/823164-git-success-stories-and-tips-from-ceph-creator-sage-weil

95Practices of a FOSS project

OBSAH

and other parallel modifications. By now, the distributed approach has
become standard as it brings significant refinement in creating patches.
Patches are more refined because they consist of a number of smaller
and well defined commits that simplify review and conflict resolution.
Another project maintainer expressed his fondness for this approach:

As maintainer I love that I can review changes as series of small commits
instead of one big patch. I’m constantly asking developers to split their
changes even more….116

It is clear that, through its command line interface, Git offers large func-
tionality for source code management. However, in order to operate cor-
rectly, Git needs to be supplemented with other programs such as diff
tools (programs that generate detailed comparisons between text files). It
would also not be possible to resolve conflicts or revise history without
pairing Git with a text editor. Furthermore, there are programs that serve
as a graphical user interface for the command line tool that Git is. By not
attempting to include all functionality, Git is in practice dependent on
into Git itself. The developers of Git show their adherence to what is com-
monly referred to as “the Unix philosophy”. This approach to software
design has been summed up by Doug McIlroy (McIlroy in Raymond,
2003) in the following way:

This is the Unix philosophy: Write programs that do one thing and do it well.
Write programs to work together. Write programs to handle text streams,
because that is a universal interface.

The approach encourages specialization on narrowly defined tasks that
by themselves may seem trivial, but are general enough to be used in
a wide variety of uses. The practical utility is then based on the ability to
combine programs in such a way that the output from one constitutes
an input for another. The universal medium which flows to and from
programs is digital text. Searching for an expression in a log message,
generating comparisons of files (diffs), resolving conflicts, and revis-

116 Git Success Stories and Tips from Wine Maintainer Alexandre Julliard. Interview pub-
lished by Linux.com. Published: 2015-04-10. Accessed: 2015-04-16. Available at: https://
www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-
tips-from-wine-maintainer-alexandre-julliard.

https://www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard
https://www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard
https://www.linux.com/news/featured-blogs/200-libby-clark/822789-git-success-stories-and-tips-from-wine-maintainer-alexandre-julliard

OBSAH

96Practices of a FOSS project

ing history – all those tasks are based on an interchange of digital text
between Git and other programs. These are all built around the idea of
automated manipulation of digital text.

Such a text interchange is also taking place when publishing new
commits in a personal repository. This is necessary in order for the
commits to be reviewed and included in the official version of the devel-
oped program. The review process is an opportunity, especially for a new-
comer, when knowledge is passed on and norms are negotiated among
maintainers and contributors. During the review of my first commits
I learned many things, including how to make proper commits in the first
place. But more importantly, I learned what the expected style of docu-
mentation writing is, pointing me in the direction I should proceed to in
order to get my commits included. After a few iterations of writing new
commits, receiving feedback and modifying them, I learned enough to
make commits that got accepted without needing to be modified during
review. It was the sandboxed space constituted by my personal reposi-
tory that allowed me to publish, receive reviews and revise my work in
order to develop the knowledge to contribute fluently to the project.

When the first batch of my commits was included in the main reposi-
tory, I also came to understand why contributions appear in clusters.
When a contributor makes a pull request, that is, asks for his commits
to be included into the main repository, one of maintainers reviews the
commits, appropriates them and pushes them to the main repository.
This can happen immediately or take several weeks, depending on how
extensive the commits are and how busy the maintainers are. Sometimes,
the order in which commits from various contributors will be reviewed
and pulled has to be negotiated. This was the case when Eric made a pull
request for his branch A:

Eric: Steve, what’s the status with the branch B?
Steve: Eric, I’ll need Keith to tell me what the “remaining bug” is
Eric: I have the feeling the intention is to merge his branch first then mine
Steve: No intentions here
Steve: But I have the feeling reviewing his branch will be faster than re-
viewing yours :)
Steve: I understand your concern, we should settle on a merge order
Steve: If the remaining bug in Keith’s branch is benign / can be fixed easily,
I think we’ll go the branch B first way
Steve: if not then branch A

97Practices of a FOSS project

OBSAH

Eric: I’m fine with everything, just want to make progress
Steve: so you should wait and see what Keith is saying before rebasing
Steve: Eric, I understand, but I’m pretty much the only one to review your
branches so bear with me please :)
Eric: mine is invasive, I don’t have any expectation
Eric: I keep amending the main commit.. :)
Steve: OK
Steve: The beginning of the release cycle is the good time to do such things
Steve: so I’ll make sure to have a look at both
Keith’s and your branches soon

By the time Eric made his request, another contributor, Keith, finalized
work on his branch B. Both branches had a common reference point in
the main repository, but Eric’s branch modified the source code in many
places and the changes it made were pervasive. Pulling Eric’s branch first
would drastically change the source code in the main repository and that
would result in generating many conflicts when pulling Keith’s branch.
From the maintainer’s standpoint, it made sense to wait for solving the
last issue on branch B and then pull it first. But there is one more angle to
this situation: knowing that branch A will dramatically change the source
code, Eric is blocked from working on anything else while he is waiting
for review. Working on something new would introduce a new branch
B that would generate many conflicts if not merged prior to the inva-
sive one. The only option he is left with is to pile his work onto branch
A (“I keep amending the main commit”). Thereby he risks only conflicts
that would result from changes introduced by the review process.

Another strategy for avoiding conflicts when two developers work on
the same part of code is to pass a modified branch from one of them to
the other to let him implement his modifications on top of it before re-
viewing and merging the whole work into the main branch:

Ted: isn’t that stuff going to conflict with whatever changes Steve was
doing to the behavior of the timeline last month?
Roy: Ted, I will let him reimplement the right behav-
iour on that branch instead, right Steve ? xD

To this, Ted replies with a link to an image of a frightened cat that has
a label “You make kitty scared”, indicating the audacity of the procedure.
But the procedure is illustrative of the degree to which Git makes it pos-

OBSAH

98Practices of a FOSS project

sible to make sets of modifications independent of their author and pass
them around to others.

These examples of pull request coordination highlight the restric-
tions resulting from the use of source code management tools. In theory,
these tools allow for almost any thinkable operation (from a purely tech-
nical standpoint, it does not matter which branch is pulled first, the final
result will be the same). In practice, developers navigate by applying
conventions to accomplishing the common tasks (in this case, opting for
creating the smallest possible number of conflicts that require human as-
sistance in their resolution). But these rules are always negotiated – if fol-
lowing the convention meant that a contributor would be blocked from
working for a long time, it would probably not be followed. What is stable
and cannot be negotiated, however, are the implications of using tools
such as Git. In this sense, the infrastructure described above mediates
the process of software development.

99Mediation and Resources Inside a FOSS Project 99Mediation and Resources Inside a FOSS Project

5
Mediation and Resources
Inside a FOSS Project

5.1 Meanings of Mediation

Now is the time to explicitly formulate how the components described
until now perform as mediators. The contents of this section (and its sub-
sections) may seem repetitive at times, but this is only because I need to
reiterate or elaborate upon some of the observations in order to relate
them to the infra-language elaborated more thoroughly in chapter 3. In
my analysis, I rely on the concept of technical mediation and its four
meanings – composition, translation, black-boxing and delegation –
which are used to structure this section.

5.1.1 Composition
The basic composition is expressed by the components already described
in the previous sections. But to go one step beyond the most immediate
tools, I will attempt to grasp more of the development environment that
is presupposed in the Pitivi project. In the following, I will start from the
position of a newcomer, who already has a computer with an appropriate
operating system installed117 and I will trace the elements of the develop-
ment environment that reside on this basis.

117 Naturally, the readily available computer presupposes a vast network of its own,
going as far as mining raw minerals, as for example Jussi Parikka (2014) shows. How-

OBSAH

100Mediation and Resources Inside a FOSS Project

The environment consists mainly of the latest development version of
the program (and the libraries it uses). The development version serves as
a shared reference point, not in the form of source code, but in the form
of a running interface. By running the development version, contributors
are able to grasp and use the result of their work. This is necessary for
testing work that has already been done and determining what should be
done next. The following excerpt provides a relevant part of conversation
a newcomer had with Pitivi developers while setting up his development
environment:

Tim: hi I would like to contribute to pitivi, I am good at python and javas-
cript, can somebody point me to the source code and small task to get
started, thanks
Eric: Tim, /[link to instructions on building the development version/]
Eric: Tim, what Linux distro do you use?
Tim: fedora 19 x86 Eric 64bit
Steve: Tim, pitivi is a complicated project, with many moving dependencies
Steve: For that reason, we have a script that allows contributors to set up
the environment automatically, which Eric linked to you
…
Steve: After the setup is done and you make sure you can run the dev
version, what I would recommend is starting with writing simple tests with
dogtail
…
Tim: so Eric : i ran the script here /[link to instructions on building the devel-
opment version/] and have pitivi-git dir and [ptv] a virtualenv kind of a thing
i guess?
Eric: good
Eric: cd pitivi-git/pitivi; bin/pitivi
Eric: works?
Eric: the [ptv] is just a bash with some environment variables set
Tim: well i have just glib and prefix dirs Eric
Eric: if you run bin/pitivi it should ..fail, can you confirm?
…
Tim: Eric, : i mean in pitivi-git/ i just have glib and prefix , and prefix is
empty too after running the script is there anything else that needs to be

ever, since this work is focused on software, I will cut the network relations at the edge
of the hardware/software distinction.

101Mediation and Resources Inside a FOSS Project

OBSAH

done ?
…
Eric: I really have to go, see you tomorrow
Steve: bye Eric o/
Tim: bye Eric : i will figure it out :-)
Steve: Tim, did you solve the dependencies as indicated on the website ?
Tim: yes that I need to I think I skipped some steps
Steve: Solve the Dependencies.
Steve: Get this script, save it, make it executable and run it: [link to the
script]
Tim: cool! just doing
Steve: just two steps :P
Steve: on f19 it should work, we’ve been developing with f18 – 20
Steve: I skipped 19 but I believe Roy used it
…
Steve: Tim, no problem yet?
Steve: (aliasing make to “make -j4”) makes the whole process faster
Tim: yeah downloading packages
Steve: Should have told you
Tim: Steve, i get [link to a copy-pasted output from Tim’s command line] on
running the script, it isn’t able to clone pitvi for me i guess ?
Steve: Thats not the first run right Tim?
Steve: the previous one must have failed
Tim: Steve, yes
Steve: Can you paste the output of the previous one ?
Steve: The run that checked out the libs etc ?
…
Steve: Tim, the file you’re showing me is a new run
Steve: You should just remove the newly created directory,
Steve: start the script once again, and paste me the output
Steve: ie remove “pitivi-git”
* Tim follows steps
Tim: it takes too long, all CC CCLD and make on my screen, is it correct, or
i have ended up firing something weird ?
Steve: It doesn’t take too long
Steve: you’re compiling gstreamer, which is a huge beast
Steve: Not the kernel by far but still
Steve: around ~1.5 millions LOC [lines of code]
…

OBSAH

102Mediation and Resources Inside a FOSS Project

Tim: yea finally something I got and it stopped, should I overwrite ? [link to
a copy-pasted output from Tim’s command line] ??
Tim: woah! cool I think I got the things right now :-)
Steve: yep, the duck pretty much means “good to go” ;)
Tim: would it take this much time always when i run the script ? Steve
Steve: Of course not
Steve: Once it’s built it’s built
Steve: you can ctrl + D and rerun the script to get back into the env
Tim: yea! my CPU would have died then :P
Steve: aha don’t worry
Tim: Steve, yea so now I can get to do some
work! what should I start with ?

Typically, to get the latest development version of a program running,
one has to download its source code and compile it. But as Steve puts
it, Pitivi is a complicated project – it depends on several underlying
libraries, some of which can be used at latest packaged version (there-
fore no compilation is necessary) and some of which must be compiled
from the source code. To simplify setting up of the development envi-
ronment, Pitivi maintainers created a script that automates the process
of checking for the required versions, downloading and compilation of
the dependencies and Pitivi itself. However, the script does not take care
of everything; there are several issues that the newcomer has to solve
manually. It is necessary to install one of the Linux distributions that
Pitivi developers typically operate with. The choice of distribution affects
what software (and in which versions) is available for the contributor and
therefore is crucial for solving dependencies. In this case, the standard
distribution used for development is Fedora, because it provides the
latest GNOME libraries upon which Pitivi is built.

As the quoted conversation indicates, running the script is also not
a trivial matter. Tim went through several iterations before he figured
out how to correctly run it. While doing so, he exchanged with others
the output from his command line that he could not interpret properly
himself. By doing so, he tapped into the knowledge that the maintain-
ers pool in the Pitivi IRC channel. The knowledge present there allowed
him to properly treat information that would otherwise remain cryptic
for him. Tim is not even sure how the correct result of his action should
look – this is demonstrated by him asking if he “ended up firing some-
thing weird?”. He is assured by the developers that what he sees on his

103Mediation and Resources Inside a FOSS Project

OBSAH

screen is normal and that in subsequent runs, it will not take this long.
Finally, the running script on his screen stops and he is greeted with
a picture of a duck made of text characters. This means that he is “good
to go”.

=================================
BATTLECRUISER OPERATIONAL

>(°)__/
(_~_/

~~~~~~~~~~~~ 
=================================

However, to contribute to Pitivi, Tim will need more than its running 
development version. He will need tools118 to get the work underway. 
Text editors allow him to browse and edit the source code, Git allows 
him to manage source code and share it, compilers allow him to turn the 
source code into an interface, debuggers allow him to find errors, Bug-
zilla allows him to see the issues reported against Pitivi, Wiki allows him 
to make drafts and write developer documentation, an IRC client allows 
him to connect to the Pitivi channel and the list goes on. The common 
denominator is that the tools are typically developed consistently with 
the free and open source software model. The reasons for this differ but 
it seems they follow the reasoning typical for the two branches of the 
movement  – either it is an issue of being self-sufficient with the tools 
abiding the same moral standards (free software), or it is a practical issue 
of being able to see the internals of the tools and being able to possibly 
influence the direction of their development (open source software).

Both of these reasons point to the recursivity involved in FOSS pro-
jects – the tools that are used in one software development project con-
stitute development projects of their own, while also using a set of tools. 
A distinct way of demonstrating this recursivity is pointing to the project 

118 It should be noted that some tools are even needed to set up the development ver-
sion. This applies to Git or compilers for example. As a result, the difference between 
some tools and dependencies may not be initially clear. The clarity comes with distin-
guishing the roles of developers and users. Dependencies are packaged programs that 
must be installed for a given program to run, regardless whether it is run by a devel-
oper or an end user. Tools, on the other hand, are not required from end users. An-
other way of saying this is that official versions of software require only dependencies 
while development versions require dependencies and tools.



OBSAH 

104Mediation and Resources Inside a FOSS Project

that develops the version control tool called Git, where Git itself has been 
used for version control from the very beginning of its development. 
Linus Torvalds, the originator of Git, described the process in a follow-
ing way:

You can actually see how it all took shape in the git source code reposi-
tory, except for the very first day or so. It took about a day to get to be 
“self-hosting” so that I could start committing things into git using git itself, 
so the first day or so is hidden, but everything else is there. The work was 
clearly mostly during the day, but there’s a few midnight entries and a couple 
of 2 a.m. ones. The most interesting part is how quickly it took shape; the 
very first commit in the git tree is not a lot of code, but it already did the 
basics – enough to commit itself. The trick wasn’t really so much the coding 
but coming up with how it organizes the data.119

In general, we can talk about FOSS projects being “self-hosting” in the 
sense that the production of one project is used by another. This is what 
Christopher Kelty is pointing at when he writes about recursive publics 
(Kelty, 2008, p. 3).

To describe how tools are used in the Pitivi project, let us first pick 
a very basic representative – text editors. There is a wide variety of text 
editors to choose from. There are command line editors and there are 
editors with a dedicated graphical user interface; there are editors sup-
porting a  number of modes or modeless editors, to name some cat-
egories according to which editors can be classified. Furthermore, text 
editors are usually customizable and extensible. For example, editors can 
be set up to use dark or light color schemes for their user interface, to 
highlight current lines, to display line numbers, to highlight the syntax 
of a certain programming language, to wrap lines longer than 80 char-
acters, to display spaces, to use regular expressions for searching, to use 
various plugins, or to complement the editor with a terminal and debug-
ger to create a so-called integrated development environment. Needless 
to say, this list only scratches the surface of possible customization. The 
width of customization possibilities is not surprising when we consider 

119 Interview with Torvalds about Git on the occasion of 10 years of Git. Interview published 
by Linux.com. Published: 2015-04-06. Accessed: 2015-04-08. Available at: http://www.
linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-
with-git-creator-linus-torvalds.

http://www.linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds
http://www.linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds
http://www.linux.com/news/featured-blogs/185-jennifer-cloer/821541-10-years-of-git-an-interview-with-git-creator-linus-torvalds


105Mediation and Resources Inside a FOSS Project

OBSAH 

the fact that the interfaces of text editors are the ones in which develop-
ers spend most time and that software developers  – their users  – also 
often carry the knowledge and skills to modify them.

However, customizations are in most cases focused on the editor 
interfaces, not on the form of the resulting text files where standards 
are enforced, although customization can help following the standards. 
For example, when I submitted my first work, the maintainer doing the 
review told me that my files contained trailing whitespaces. This meant 
that I forgot blank space characters at the end of some lines. These char-
acters are generally considered redundant and may cause problems in 
certain situations and so it is considered a good practice to remove them. 
After I got the review I had to set up my text editor so that it displayed 
trailing whitespaces (which were invisible until then) to avoid the issue.

Another instance emphasizing the existence of a standardized output 
was marked in a discussion among two of the maintainers I witnessed on 
the Pitivi IRC channel. The subject of the discussion was the “80 column 
rule”, which states that any line in a text file should not be longer than 80 
characters.120 This rule is so common that many text editors assume it by 
default. But apparently, the rule makes more sense with regard to some 
programming languages (like C for example) than others (like Python, 
which is used in Pitivi). Also, wide computer screens are common and 
enforcing the rule leads to leaving much of the screen space unused. In 
the end, it is up to the project maintainers to make an agreement. There 
were two justifications for enforcing the rule for the Pitivi source code: (1) 
“I want to be able to dual screen on modest sized computers.” (2) “Some 
hackers might have their editor setup with 80 chars assumption.”

The first reason is practical – wide screens are common, but they are 
usually tied to a place because of their size. When traveling, for example, 
more modest screen sizes are still standard. Furthermore, the devel-
oper work-flow usually involves displaying two text files side by side 
on a screen (“dual screen”) and this requires making the text limited in 
width. In this context, the old rule, with its roots in the 80 column IBM 
punch cards, still has some relevance.

120 Unlike the mainstream text processing programs contained in various office suites, 
text editors used by developers do not employ the metaphor of a page, which restricts 
line width according to the specified paper format. The only limiting factor for editors 
designed for software development is the size of a computer screen, which is widely 
variable nowadays. Thus, limiting the width of the line has become more a matter of 
agreement than a matter of external constraints.



OBSAH 

106Mediation and Resources Inside a FOSS Project

The second reason is explicitly concerned with standardization. Even 
though the maintainers are aware that the number 80 characters is arbi-
trary (stating that “[S]ocrates could troll like this: it could be 74”121) they 
still use it as a reference point because it seems to be the most commonly 
used option. By applying the 80 column rule, the project maintainers 
intend to comply with the expectations most experienced developers 
could have, therefore lowering the barrier (of setting up or adjusting the 
development environment) to entry for them. As we will see further, this 
pattern can also be found with regard to other tools.

Now, if we add to these components the tools and platforms elabo-
rated upon in the previous sections of this text (Git, Bugzilla, Wiki, blogs, 
IRC channels, licenses, and the development versions of the software 
itself), we are starting to grasp the extent of the composition that goes into 
a single project of free and open source software development. However 
we get a more complete picture when we realize that each of these com-
ponents is a  development project with a  composition of its own, thus 
widening the number of relations to an exponential degree. When we put 
this together with the fact that development decisions require knowledge 
of a broader development ecosystem, we see what is called the barrier to 
contribution. Thus, for a newcomer, the world of open source software 
development is anything but transparent. This is not because the key infor-
mation is secret; it is indeed publicly available. But there is just so much 
information that it requires significant effort to process it.

This point has been expressed in a public video stream with develop-
ers from another project:

Nobody is allowed to push code directly to the trunk just because we believe 
in code reviews so there’s not really a barrier like hey I need to be approved 
to such and such team before I can push code. That’s not true.

Once someone’s been around for a little bit, then they start to find out where 
we keep certain information and things. I mean it’s not like we intentionally 
keep people out, it’s just like once you get into the flow of how things work 
then you figure it out and then one day you’re like “oh, I’m an [project’s name] 
developer” just because you know where the stuff’s at.

121 To “troll” means to make controversial statements with the intention to spark 
heated discussion and conflict.



107Mediation and Resources Inside a FOSS Project

OBSAH 

The only difference between us and a lot of other people is that we’ve been 
around longer and all that kind of stuff.

Here, the developers say that there is no higher authority that would 
select who can contribute. The selection happens on an entirely different 
front: the effort put into finding out where information is kept and learn-
ing how to use it. Obviously, the presupposition here is that newcomers 
already have the skills to contribute. If this is true, then the difference 
between a  newcomer and a  recognized developer is knowing “where 
the stuff’s at”. It is a problem of orientation, not accessibility. In other 
words, the word “open” designating this model of software development 
certainly means “accessible”, but it does not mean that modification and 
redistribution are effortless. Quite the contrary.

As I have shown, there are many requirements new contributors have 
to meet. They need to know their tools, the standard platforms and also 
the project specifics. This goes directly against the advertised claims that 
“anyone”122 can contribute. Certainly, there are roles in FOSS projects that 
are easier to pick up (like a translator or documentation writer), but these 
are rather supportive of the main activity and more often than not do 
not allow for employing the main incentive for development: scratching 
one’s own itch. Therefore, there is a barrier to contribution that selects 
contributors according to their skills, motivation and free time. The other 
side of the coin is that overcoming the barrier means learning, which is 
empowering either on its own (actors are able to modify software to fit 
their needs) or in other institutional contexts (actors can demonstrate 
their skills in educational institutions or at the labor market).

But how can developers presuppose that newcomers already have the 
skills necessary to contribute when every development project relies on 
mastering so many other entities? The first part of the answer could be 
expressed by a single word: specialization. Developers choose the com-
ponents they want to work on, and over time they become specialists in 
those areas. This is nothing uncommon. The second part of the answer 
rests on the fact that the relations are not attached to ever more new enti-

122 Equating public access to source code with the claim that anyone can modify it and 
get the modifications through the review process is common. It is also the implica-
tion of what the first page of the Pitivi website states in the biggest font: “We believe 
in allowing everyone on the planet to express themselves through filmmaking, with 
tools that they can own and improve.” There is a direct relationship between the words 
“everyone” and “improve” in that statement.



OBSAH 

108Mediation and Resources Inside a FOSS Project

ties. The meaning of standards is that they are present through the field. 
For example, Bugzilla uses Git and wiki in its own development while 
MediaWiki uses Git for managing its source code. Almost all of the pro-
jects have an IRC channel. To be sure, projects have varying rules for 
using the components in development. For example, the commit mes-
sages will contain different information – in the MediaWiki project, the 
commit messages must contain the name of the reviewer, while in Pitivi 
they contain only a description of what the commit does. But the repeti-
tive occurrence of these development components gives the landscape 
a sense of arrangement. Therefore, when a core developer on the Drupal 
project is asked what makes Git a great tool, she answers:

For me, it’s Git’s  ubiquity. Particularly in the last couple of years, Git has 
become the clear winner in the version control wars, and having one common 
language to speak with and collaborate with other developers has solved 
SO many problems.123

Given the same question, a maintainer of the Qt project remarks:

And since it’s now so popular, it’s not a barrier of entry for new contribu-
tors.124

The advantage to using a  standard tool is the lower entry barrier for 
newcomers. This is based on the assumption that most newcomers 
will already be familiar with the tool and do not have to learn it in the 
course of getting involved in the project. Furthermore, once the tool is 
used widely enough, one can assume that others know its commands. 
Therefore, it ceases to be necessary to describe at length various courses 
of action; rather, it suffices only to name the commands (which, in this 
sense, constitutes the “common language”).

123 Git Success Stories and Tips from Drupal Core Committer Angie Byron. Interview pub-
lished by Linux.com. Published: 2015-04-08. Accessed: 2015-04-10. Available at: http://
www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-
tips-from-drupal-core-committer-angie-byron.
124 Git Success Stories and Tips from Qt Maintainer Thiago Macieira. Interview published by 
Linux.com. Published: 2015-04-07. Accessed: 2015-04-10. Available at: http://www.linux.
com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-
qt-maintainer-thiago-macieira.

http://www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron
http://www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron
http://www.linux.com/news/featured-blogs/200-libby-clark/822227-git-success-stories-and-tips-from-drupal-core-committer-angie-byron
http://www.linux.com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira
http://www.linux.com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira
http://www.linux.com/news/featured-blogs/200-libby-clark/821948-git-success-stories-and-tips-from-qt-maintainer-thiago-macieira


109Mediation and Resources Inside a FOSS Project

OBSAH 

These findings point to one claim – that knowledge of standard tools 
reaches very far. This claim draws on the conceptualization of knowledge 
as a relationship between an actor and information (for example infor-
mation that constitutes an interface). And in a situation where a certain 
piece of information is standard, i.e. has an established presence in mul-
tiple locations, knowledge follows the actor wherever he goes. This rela-
tionship is symmetrical in the sense that both actor and information are 
needed to produce knowledge, but it is also asymmetrical in the sense 
that actors cannot be copied (and thus reach multiple locations simulta-
neously) – only information can. Thus, we are getting back to reproduc-
ibility and automated manipulation of digital text.

5.1.2 Translation and Delegation
This digital medium is crucial also for translation and delegation within 
free and open source software development. In this environment, trans-
lation occurs in a very literal sense when ordinary text is translated into 
one of the languages that are spoken by the major actants. For example, 
if a text is to be displayed on the project’s wiki, it must contain markup 
signs consistent with the wiki markup language. This means that the 
formatting of such a text needs to be marked by additional characters. 
When saved in the wiki, these additional characters are translated into 
the desired formatting for the original text. As a  result, there are two 
texts: first, the raw text with visible markup signs that is edited by the 
author, and second, the result translated into a formatted text without the 
markup signs that is accessible to the reader. Unless the reader decides to 
inspect the page by looking at the text “backstage” (in MediaWiki, this is 
achieved by clicking the “View source” button), he or she will not see the 
markup signs. They serve as instructions for the translating agency (in 
this case, a component inside the WikiMedia platform), but are invisible 
for the reader.

’’text in italics’’ gets translated as text in italics 
’’’bold text’’’ gets translated as bold text

The same applies, for example, to the Hyper Text Markup Language 
(HTML), which is used for publishing on the project’s web pages or devel-
oper blogs. The syntax of the HTML markup signs is more complex than 
that of the wiki markup because the language is aimed at more general 



OBSAH 

110Mediation and Resources Inside a FOSS Project

use. But it is still a markup language125 – it is predominantly concerned 
with formatting of documents (websites) and their display. Adding to 
the complexity, there are a number of translating agencies for HTML – 
commonly known as web browsers, with minor differences in how the 
markup is interpreted in each one of them. However, the full complexity 
is uncovered by the fact that more than one language may be involved 
in the translation. For example, because wiki pages are accessed by web 
browsers, it is necessary to translate the content into HTML. Therefore, 
the wiki markup is translated first into HTML markup and only then into 
reader-ready formatted text.

Wiki: ’’text in italics’’ 
HTML: <i>text in italics</i> 
formatted: text in italics

Wiki: ’’’bold text’’’ 
HTML: <b>bold text</b> 
formatted: bold text

Therefore, we have a  chain of translations at the beginning of which 
stands the author, who decides which markup language to use and writes 
the first version of the text in it, thus augmenting plain natural language 
with markup. All subsequent translations are done by parsers which 
employ automated manipulation of text to translate it into different lan-
guages or reader-ready results. Each of these parsers consists of a set of 
rules for the substitution of markup signs from one language to func-
tionally equivalent signs in another. This is only possible because of the 
existence of a set of conventions aimed at searching and replacing text 
patterns. These conventions may be part of a  particular programming 
language, but in their raw form, they are formulated in what is called 
“regular expressions”. Whatever their form, their general function is the 
same – instead of the limited options of searching and replacing literal 
strings of text, they introduce general concepts like a word, a number, 
a letter, or the beginning or end of a line, thus allowing for formulation 
of patterns that match entire classes of literal strings. I will use a few ex-
amples of regular expressions to demonstrate their functionality:

125 Or traditionally has been. The latest version, called HTML5, represents a departure 
from this category, but this fact is not relevant for the purposes of this text.



111Mediation and Resources Inside a FOSS Project

OBSAH 

.*@example\.com matches any email address at the example.com provider 
[0-9][0-9]?\.[0-9][0-9]?\.[0-9][0-9] matches any date in the dd–mm–yy, mm–
dd–yy, d–m–yy, or m–d–yy formats
={2,6}.*={2,6} matches any second to sixth level heading in the wiki markup 
language
<b>\w</b> matches a word formatted to bold in the HTML markup language

The importance of regular expressions is also shown by the fact that they 
are regulated by the Portable Operating System Interface (POSIX) stand-
ard, a norm that regulates key components of operating systems to assure 
compatibility. However, despite standardization efforts, there are several 
versions or “flavors” of regular expressions, and so their exact formu-
lation always depends on the parser that is used to process them. Now 
we arrive at the point where language translation is a nested problem. 
This is because parsers of markup languages require regular expressions 
(or programming languages) that require their own parsers (in the case 
of programming languages, a compiler) which may comply to different 
standards. Therefore, as we can see, even (literal) translation has its own 
composition.

The results of the described chain of translations are usually used for 
publishing. The contents of both blogs and wiki pages can be served to 
multiple readers at the same time as long as they are present on a server, 
thus creating a stable point for referencing. Essentially, the function of 
such pages is to delegate information to a number of places (the moni-
tors of connected readers) for a  given period of time. In this way, the 
delegation overcomes distance (the text was written somewhere else) and 
time (the text was written at another time) and is able to transport the 
same information into entirely different contexts.

In programming languages (as opposed to markup languages), the 
translation gets a  whole new dimension. It is no longer the case that 
only markup signs are added to natural language; the whole statement 
needs to be reformulated according to the logical structure of the pro-
gramming language and of the interface that is provided by libraries. This 
is so because, unlike markup languages that are focused on organizing 
text into a desired shape, programming languages are aimed at perform-
ing actions if certain conditions are met. Markup languages are full of 
markup signs while programming languages are full of conditionals. As 
an example, consider this part of a Bash script (which is not technically 



OBSAH 

112Mediation and Resources Inside a FOSS Project

a programming language, but its use of conditionals is analogous) with 
every line annotated in natural language:

while read line	 # read every line of a given file 
  do	 # at each line, do the following 
    if [[ ${line} =~ $n ]]	 # search for pattern specified in variable “n” 
    then	 # if the pattern is found, do the following 
       buff1=”$buff1 $line”	 # add the line to variable “buff1” 
    else	 # if the pattern is not found, do the following 
       buff1=”$buff1\n\n”	 # add two new lines to the variable “buff1” 
    fi	 # no other options will follow 
  done < $file	 # do all of above to file specified 
	  	 in the variable “file”

In the IRC channel, explanations of what parts of source code “do” are 
common. It allows for fast overview of the code and saves hours of brows-
ing to discover its function – provided there is someone knowledgeable 
enough to explain it:

Ben: You have a media stream, imagine a video… you want to seek to the 
time 30s… how Gstreamer knows it has to stream the data at (the time) 
30s and not 40s or 100s or whatever 
Ben: Steve: ^ 
Steve: you’re asking me to explain you the seeking mechanism in 
gstreamer? 
Steve: Basically a seek event travels upstream until an element (such as 
yours, or a demuxer) answers “yep I’ll handle that” 
Steve: It then seeks itself in ways that are relevant to its job (for example 
your element finds the image that has to be output first, a demuxer might 
look up an index table to find out the byte offset in a file at which he’ll be 
able to resume streaming, preferably a keyframe) 
Steve: It then propagates a segment downstream, saying “the segment 
I’m going to play starts at the nth second in media time and ends at nth 
second in media time” 
Steve: And starts to output buffers once again 
Steve: In the case of a demuxer and accurate seeking, the demuxer might 
output data prior to the requested start, necessary for decoding of the 
first actual frame to be rendered, the decoder will clip these “decode-only” 
frames but that’s irrelevant for your element 



113Mediation and Resources Inside a FOSS Project

OBSAH 

Steve: As it can be accurate at no cost even when the requested seek is 
not accurate 
Steve: That means a demuxer usually needs to convert a time seek to 
a byte range when operating in pull mode 
Steve: But imagesequence doesn’t need that 
Steve: Ben, does that answer your question?

The excerpt serves to demonstrate how formalized source code is trans-
lated back into natural language. There are events and elements which 
are personified so that they can travel, answer, need to do things, say 
things. The result of this complicated interconnection is that a video is 
played exactly from the point selected by a user – also an action. Here we 
can see that the compiled source code literally does things. It is designed 
to do so by its originators  – its developers. They devise the actions to 
be taken and design the interlocking of elements and events. By writing, 
they populate the internals of a program with entities that delegate action 
and wait for the specified conditions to trigger it. The software entities 
that are closest to a  literal expression of this principle are daemons.126 
These are programs on their own, designed to run in the background, 
monitor other tasks, and trigger an action if certain conditions occur. 
Thus, by formulating precise rules for triggering conditions and actions 
to be carried out, these entities allow for a very sophisticated delegation 
of action.

Such sophistication also leads to a  high rate of errors, that is, del-
egated actions that are not intended by developers. The presence of 
errors is seen as inevitable and is considered unavoidable when writing 
source code. One of the maintainers expressed this point aptly when he 
substituted writing code for creating new bugs, saying “We all love cre-
ating new bugs :)”. There is a  distinction between the creative and fun 
activity of writing source code that gives a  program new features and 
the often hard and frustrating maintenance that involves finding and 
fixing errors. Because the first activity usually means introducing new 
bugs to the existing code, it is common for development projects to have 
a “feature freeze” period before releasing a stable version. This period is 

126 The term daemon is probably used with reference to Maxwell’s daemon, which 
represents a well-known image of an entity quietly and tirelessly working in the back-
ground and performing predictable actions depending on input. This image is not 
limited to science and technology, for example Pierre Bourdieu uses the metaphor to 
describe the function of an educational system (Bourdieu, 1998, p. 20).



OBSAH 

114Mediation and Resources Inside a FOSS Project

dedicated to maintenance only, and the design and implementation of 
new features is put on hold. During my fieldwork in the Pitivi project, de-
velopment efforts were stretched towards releasing the 1.0 stable version. 
As a result, there has been a feature freeze period for more than a year at 
the time of writing. This was indicated by the infrequent use of collabo-
rative drafting tools like wiki pages on the one hand, and on the other, 
common instances when new bugs and debugging information filled the 
IRC channel.

I  have described the basic principles of debugging in a  previous 
section, but let us return to this activity and identify the translation and 
delegation that are performed in the course of it. Debugging starts with 
an error, an unexpected course of action performed by the program, 
which does not correspond to (or directly hinder) its functionality. 
Errors are usually discovered by using the program, which means that 
their natural form is contained in the user interface of the program. The 
whole practice of debugging is then focused on identifying the compo-
nent and, if possible, the part of the source code within it that causes the 
error. A manifestation within an interface (which is usually expressed in 
natural language at first) is translated into an identified part of the source 
code. In this process, the debugging tool works like an interpreter that 
bridges the barrier made by compilation and translates the error from 
one form to another.

Usually, when an error is discovered, a  bug report is created to 
account for it and to track its development. The report ideally contains 
both an expression of the error in natural language (which deals with the 
compiled interface) and the information produced by a debugging tool 
(which identifies parts of source code). This information is submitted 
to Bugzilla, which stores the data in a database and creates a dedicated 
web page for each bug. Thus the submitted information is embedded in 
HTML to be viewable in a web browser. The translation into the markup 
language goes hand in hand with publishing the information. During 
the process, the information is delegated from its origin at a user’s local 
computer into a database run on a server and then into different local 
computers that belong to the developers, who access the report through 
web browsers.

If the bug is confirmed and no other information is necessary to iden-
tify its cause, the report serves as a space where public discussion takes 
place about the options for approaching it and how to design a  patch 
that would fix it. In this phase, the error is transformed into a task that 



115Mediation and Resources Inside a FOSS Project

OBSAH 

can be picked up and solved by a developer. Now it is halfway between 
problem and solution. Information about bugs is not posted solely to the 
IRC channel (even though the discussion is faster and more convenient 
there) because fixing a bug usually takes a longer period of time (when 
the debugging information must be handy) which can only be overcome 
with the asynchronous communication that Bugzilla provides. Further-
more, by also keeping track of all the errors that were fixed, Bugzilla del-
egates the information even further to the future, when the fixed bug can 
manifest itself as a regression. The small memory footprint of digital text 
and the efficiency of automated search functions allow for this luxury of 
archiving.

When a  developer picks a  task from Bugzilla, or decides to write 
a brand new feature, he or she needs to translate the feature into a com-
plete design artifact first. A common vehicle in this process are artifacts 
called “mockups”. In software development, mockups are essentially 
screenshots of how the future versions of a program will look. They take 
the form of pictures expressing the intended shape of the user interface 
and can be used to visualize adding buttons, resizing panes, moving 
menus, or simplifying the interface by removing any of the elements. 
Thus, the idea of a  new design is translated from natural language to 
a non-text medium directly showing the result. After that, mockups are 
usually published on a blog or in the project wiki. Both of these publish-
ing options serve to delegate the design idea to other developers, while 
collecting feedback. Thus, this type of delegation is aimed at provoking 
action, not propagating it.

The next step in the design process is to create a  functioning pro-
totype by modifying the existing program’s  source code. However, to 
ensure that the modifications remain distinguishable and reversible, 
they must be tracked by a source code management system. Hence, the 
translation at this point is double: first from a mockup and natural lan-
guage to a programming language, and second from a continuous stream 
of developer’s work to a set of self-sufficient work units. The first trans-
lation, as I already showed, leads to the delegation of intended actions 
from a private computer the source code is modified on, to all comput-
ers on which the code is running in the form of a compiled program. In 
the second type of translation, the work is planned in order to be dis-
sected into a set of atomic commits. In Pitivi, commits are labeled in an 
imperative form, expressing what is achieved by applying them. Here is 



OBSAH 

116Mediation and Resources Inside a FOSS Project

a log with labels of some of my commits that were included into the main  
repository:

commit 5b06c4686ffbe0eb76d08fd1b6f3b618384f5057 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Sun May 25 14:03:52 2014 +0200 
 
    help: replace menu bar and main toolbar with header bar and app menu 
everywhere 
 
commit b103ce8947026d03c1f507200c7479fea38d6d4c 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Tue May 13 16:09:33 2014 +0200 
 
    help: update sysreq.page 
 
commit 90ac17a661a9a29686cf4a4f6f926e6f75f417d9 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Tue May 13 14:35:50 2014 +0200 
 
    help: remove unnecessary note from mainwindow.page 
 
commit ee93d664894b5253941d58f834f00d3bdd8f87f7 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Tue May 13 14:29:02 2014 +0200 
 
    help: add tip on detaching the previewer to mainwindow.page 
 
commit 6497108acf97c8c772e5dfea3d2824c68d5fb4b8 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Tue May 6 17:24:33 2014 +0200 
 
    help: adjust see also links 
 
commit bda833dfe0b1a5ad10341ce5c7fe68b44fbd2405 
Author: Tomas Karger <tomkarger@gmail.com> 
Date:   Tue May 6 16:51:04 2014 +0200 
 
    help: move select unused files from a separate file to medialibrary.page



117Mediation and Resources Inside a FOSS Project

OBSAH 

The labels are indicative of the delegation performed by commits. They 
too delegate actions, only not directly to user’s  computers, but to the 
source code. In this sense, the delegation of source code management 
systems (such as Git) is more enclosed in the development process – the 
commits usually don’t reach the users, they remain a development aid – 
while the delegation performed by the programming languages goes 
practically end to end (from developers to users).

By creating a database of labeled, time stamped, uniquely identifiable 
and precisely recorded commits, source code management tools translate 
the work of an individual, so that it is self-sufficient and can be shared 
with other programs and programmers. It uses the “universal interface” 
proposed by the UNIX philosophy – digital text formed into predefined 
data structures  – in order to pass information for processing to other 
entities. Commits can be pushed to a  repository and pulled from it by 
someone else, conflicting modifications are highlighted and resolved, dif-
ferent versions of a file are sent to difftools to visualize differences and 
commit history can be sent to a search tool to find the work of a particular 
contributor. These are probably the most common instances of such use.

By translating work into standardized commits, Git performs an im-
portant function of delegation. Publishing commits in a repository makes 
possible independent cloning of the code by someone else. The source 
code is delegated to a public space so that it can be reviewed, modified 
and appropriated, can become the subject of discussions and can trigger 
learning. This delegation is key for free and open source software devel-
opment, because it allows for the existence of one of its prime organiza-
tional features – work self-assignment.127 This seems to be consistent with 
the fact that FOSS projects are often driven by volunteer effort, and so 
there is a lack of any leverage to enforce work assignment. This is often 
contrasted with the fact that FOSS projects sustain themselves for long 
periods of time and are able to produce stable and widely used software.

Seen from this perspective, a  FOSS project represents a  puzzling 
combination of stability and fluidity. However, such a configuration can 
be explained when we take into consideration the usual process of how 
new contributors get involved in a project. In this process, a minority of 
maintainers serve as bearers of the knowledge necessary for meaningful 
contribution. The heavy involvement of maintainers does not correspond 

127 A study by Crowston et al. (2007, p. 6) indicates that self-assignment is the most 
frequent form of work assignment in free and open source software development.



OBSAH 

118Mediation and Resources Inside a FOSS Project

to the image128 of aggregates of unrestrained contributors that swarm 
around projects to contribute when the conditions are right. To be sure, 
there are occasional contributors who get involved from time to time, but 
cannot be relied upon for consistent input. In an interview for the Linux 
Voice magazine, Lennart Poettering, a well-known developer of the con-
troversial Systemd init system, talks about such occasional contributions 
as “drive-by patches”:

LP: So anyway, long story short, we came to the conclusion that Upstart 
is conceptually wrong, and it moved at glacial speeds. It also had the 
problem that Canonical tried very hard to stay in control of it. They made 
sure, with copyright assignment, that they made it really hard to contribute, 
but that’s what Linux actually lives off. You get these drive-by patches, as 
I would call them, where people see that something is broken, or something 
could be improved. They do a Git checkout, do one change, send you it and 
forget about it.

LV: And you never see them again!

LP: Yeah, and this is great – these are the people you want to have, because 
the vast majority of patches are actually of that kind. It gives you this polish-
ing that you want. The people invested in the project all the time do the big 
things, and don’t care so much about the polishing. So these kind of patches 
are what you want. But if you do these copyright assignment things, you will 
never get those people because they would have to sign a contract before 
they can send you something.129

In the interview, Poettering compares Systemd with Upstart, a different 
init system developed at that time. He points out that the additional ne-
gotiation (Yochai Benkler would see this as an increase in transaction 
costs) involved in signing a  contract before contributing discourages 
potential contributors (which, in turn, may be one of the reasons why, 

128 For example, the Fedora contributor conference is called Flock, drawing on the 
image of bird collective behavior as chaotic yet organized, and also on the popular 
expression “birds of feather flock together”.
129 Interview: Lennart Poettering. An interview published by the LinuxVoice magazine. 
Published: 2015-01-16. Accessed: 2015-01-16. Available at: http://www.linuxvoice.com/
interview-lennart-poettering/.

http://www.linuxvoice.com/interview-lennart-poettering/
http://www.linuxvoice.com/interview-lennart-poettering/


119Mediation and Resources Inside a FOSS Project

OBSAH 

according to him, its development moved at “glacial speeds”). The group 
most affected by the contract requirement are the occasional contribu-
tors, whose work is highlighted by Poettering. He claims that Linux liter-
ally “lives off” drive-by patches, that the “vast majority” of patches are of 
this kind and that the occasional contributors are “the people you want 
to have”. On the other hand, the maintainers (“the people invested in the 
project”) are mentioned in only one sentence and their importance is di-
minished, even though Poettering acknowledges that they are doing “the 
big things”. This tendency is described more precisely by Paolo Bonzini, 
a maintainer on a different project who, in an interview for Linux.com, 
talks about the “long tail” distribution:

Each release of QEMU [Quick Emulator] has contributions from roughly 170 
people. The distribution has a very long tail: about 40 percent of those 170 
people contribute only one patch, and about 60 percent contribute less than 
five.

KVM [Kernel-based Virtual Machine] is smaller, with about 25 people contrib-
uting to each release. The same “long tail” effect is visible there, about half 
of the people only contribute one or two patches.

The long tail is very important. A  lot of those “drive-by” patches are bug 
fixes.130

These remarks indicate that while the work of occasional contributors is 
emphasized, the work of maintainers is taken for granted and is, in a sense, 
invisible (as elaborated by Bonnie Nardi and Yrjö Engeström 1999). The 
work on the “big things”, carried out by a  few dedicated individuals,131 
goes largely unnoticed. However, core developers, by being available for 
communication most of the time (and maintaining their involvement for 
extended periods of time), holding necessary knowledge (with the will-
ingness to share it) and performing (not so enjoyable) maintenance, form 

130 Git Success Stories and Tips from KVM Maintainer Paolo Bonzini. Interview published 
by Linux.com. Published: 2015-04-07. Accessed: 2015-04-08. Available at: http://www.
linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-
from-kvm-maintainer-paolo-bonzini.
131 This is supported by studies which note the participation inequality issue (Holt-
grewe, 2004; Krishnamurthy, 2002; Kuk, 2006; McInerney, 2009).

http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini
http://www.linux.com/news/featured-blogs/200-libby-clark/821899-git-success-stories-and-tips-from-kvm-maintainer-paolo-bonzini


OBSAH 

120Mediation and Resources Inside a FOSS Project

the backbone of a project without which the drive-by patches would not 
be reviewed and merged into the main branch. In other words, the conti-
nuity of a project relies on continuity of involvement for at least a narrow 
group of human operators.

But this claim shouldn’t be read as a  statement evaluating the im-
portance of humans vis-à-vis non-humans. They still use delegators to 
transmit knowledge, even simply through chatting in the IRC channel. 
In fact, since this kind of software development is taking place online, 
they have no other choice. Some tool must be used to delegate the in-
formation through the Internet infrastructure. Furthermore, the whole 
organization of development projects relies on delegation of formal-
ized chunks of information, whether commits within source code man-
agement systems or bug reports within issue databases. They allow for 
cloning, branching, prototyping, review, merging, testing, debugging, 
confirmation and fixing – all the key practices that there are in free and 
open source software development.

In this way, commits and bug reports resemble what Bruno Latour 
calls inscriptions (Latour, 1986, p.  20; Latour & Woolgar, 2013, p.  236). 
They are mobile, immutable, flat (just text), can be reproduced at little 
cost, recombined or superimposed. The mobility of digital text on the 
Internet is self-evident. Immutability is enhanced by the ability of Git 
to clone whole repositories. Thus, when developers make modifications 
to the source code, they can demonstrate their effect by compiling and 
running a self-sufficient version of the program. Similarly, reports in Bug-
zilla are public. Should there be a report about a critical bug that no one 
is paying attention to, it is always possible to link directly to the report 
in public discussions, be it in the project’s IRC channel, in a blog post 
that is displayed by the project’s blog aggregator, or anywhere outside 
the project. The pressure to address such instances comes from the fact 
that speed of development and fixing of critical bugs is a major indicator 
of the project’s health for anyone outside, including other development 
projects that might consider using the software in question:

Steve: No, 
Steve: the errors are in the tests 
Steve: not in our software 
Steve: and maintaining tests is exactly what you don’t want to do ;) 
Tim: i know! i was saying that, the point in writing tests is only if they pass! 
Steve: Look: [link to a bug report] 



121Mediation and Resources Inside a FOSS Project

OBSAH 

Steve: That’s my problem 
* Tim looks 
Steve: And the lack of activity on the report makes me doubt the reactive-
ness of the team 
Steve: I mean it’s a fatal bug 
Steve: [link to a git repository log] 
Steve: I also look at that 
Steve: 30 commits in 2013 is not really intensive dev 
Tim: oh! I see, just 30 in complete yr!! 
Tim: that’s worse than my local repos lol ;) 
Steve: We had like 600 in pitivi alone ahaha 
Tim: quite obvious! 
Steve: A stable project might of course have less commits 
Steve: But I don’t believe [project’s name] is one 
Steve: so … 
Steve: I would give a good look at our other options ;)

In this conversation, a maintainer and a newcomer discussed the pro-
ject’s  options with regard to automated testing. They were discussing 
what software to include into their infrastructure for testing. But there 
was a problem with the program they tried, it showed errors that the team 
found out to be caused not by the software being tested, but by the testing 
tool itself. As a result, members of the Pitivi project would have to con-
tribute to the testing software first in order to fix it before using it. This is 
not a very pleasing outlook. Furthermore, the contribution would prob-
ably mean longer involvement to keep the tests functional because the 
project does not seem to be “healthy”.

As evidence, Steve provides a link to a report about a critical bug, in 
which the response time from an assigned maintainer is rather long – 
weeks to reply to a comment and 10 months to fix the issue. As a further 
evidence, Steve provides a link to the project’s stable repository, which 
shows that only 30 commits were made during a  period of one year. 
This is a very low rate for a development project that has not yet reached 
maturity and stability. Even Tim, as a newcomer, recognizes that this is 
a problem and states that he has more commits in repositories that only 
he contributes to. The final point is made by comparing the development 
speed of Pitivi, which has twenty times more commits for the same time 
period (and this does not include the commits made to the underlying 



OBSAH 

122Mediation and Resources Inside a FOSS Project

libraries). As a result, Steve encourages Tim to avoid using this testing 
software and look for alternatives.

This decision, based on indicators described above, will have un-
wanted consequences for the project which was evaluated. First, it will 
not advance in gaining new users, which will prevent it from becoming 
a widely supported standard in its area of utility. Standard software typi-
cally has the advantage that other tools are designed to work well with it, 
and so it often requires less effort to set it up in various environments. Its 
users will also be able to draw from a more extensive knowledge base as 
there will be more users who could provide information. Thus, becoming 
a standard is a process that could be characterized by bootstrapping – the 
more standard a software is, the easier it is to gain new users, which will 
result in it becoming even more standard.

Second, the evaluated project will lose potential future contributors, 
who are often recruited from users that need to fix an issue. It is not 
a good prospect for a newcomer to see that in order to use a program 
for contributing to one project (in this case Pitivi) they would have to 
become a maintainer on a different project (the testing software in this 
case). Alternatively, if the second project performed well and merely 
needed a  limited contribution from time to time, it would probably be 
acceptable. In that situation, both sides could benefit – the first project 
for being able to draw on work that has already been done on the tool 
and by being able to influence the direction of its development, and the 
second project for gaining users and potential contributors to further 
enhance the speed of development. Here too, the bootstrapping process 
is at work once a project reaches the state of performing acceptably for 
others. And this state is indicated to others by immutable inscriptions 
described above.

The inscriptions are also flat. They usually consist of digital text or-
ganized by markup or programming languages. The use of pictures or ge-
ometry is not very common except for mockups or other design schemes. 
The result is a set of files that are rather easy to modify (in principle, it 
is much harder to make purposeful modifications as a part of the devel-
opment process) and adapt to one’s needs. However, the application of 
automated manipulation, which permeates the use of digital text, and to 
a lesser extent digital images, allows for reproduction only with the use 
of computational resources. This makes it possible for those files to be 
translated and delegated multiple times without representing a signifi-
cant resource burden.



123Mediation and Resources Inside a FOSS Project

OBSAH 

Furthermore, these inscriptions can be recombined and superim-
posed. The availability of self-sufficient commits in public repositories 
makes it possible to take them over and include them in other reposito-
ries, be it one owned by a reviewer or a repository containing the reviewed 
stable version of the software. In these repositories, the original commits 
are combined either with modifications made by the reviewer, or with 
subsequent commits pushed to the stable repository. Superimposition, 
on the other hand, manifests itself mainly in the review process. Here, 
the proposed commits are evaluated not only by the criterion working/
not working, but also the overall design of the modification is assessed 
with regard to the theory that the core developers maintain. For example, 
Pitivi maintainers would not accept a patch that introduces video editing 
functionality to Pitivi itself, as they believe that the right place for this 
functionality is the underlying libraries. However, in the past, this func-
tionality was part of Pitivi. It was only in 2009 that the design decision 
was made to separate the interface from the functionality into differ-
ent modules. Thus, by superimposition of concrete modifications to the 
source code, the reviewers are able to assess whether they adhere to the 
basic development principles agreed upon within the project.

5.1.3 Black-boxing
The primary purpose of Bugzilla, Git and other tools is to organize work 
and make it connectable. They are neither intended nor used to work as 
archiving tools that record what exactly takes place during software de-
velopment. Only reviewed and agreed upon commits are included in the 
main repository, and the prototyping space of personal repositories is 
periodically cleared when repositories are synchronized to share a refer-
ence point. All failed attempts, experimental branches or history revi-
sions stay hidden when browsing the main repository. Furthermore, chat 
discussions, blog posts, issue database entries or conceptual prototyping 
on the project’s wiki pages are not even part of the information that Git 
handles. Having available detailed records of all successful work that has 
gone into a piece of software is seductive but misleading. The full history 
of a project lies scattered over numerous wiki pages, blog posts, issue 
reports, chat discussions or mailing lists that need to be read against 
each other in order to reconstruct the theories that guide development.

The complicated composition of a  FOSS project, involving a  few 
platforms, several contributor roles, a number of tools, hundreds of bug 
reports and thousands of lines of code results in the project appearing as 



OBSAH 

124Mediation and Resources Inside a FOSS Project

a thick black-box to a newcomer – but not only to a newcomer. Given that 
contributors have certain roles and specialize in certain areas, they too 
face smaller black-boxes that represent areas that are out of their scope. 
This can mean two things. Either they never spent enough effort to famil-
iarize themselves with what constitutes the composition of that area, or 
their familiarity is not recent enough.

Software (i.e.  the tools and platforms used) is constantly developed 
and new versions are released. This means that it is a moving target for 
anyone who wants to stay current. New versions always mean changes 
in interfaces or, more importantly, in behavior. These changes are docu-
mented in release notes, which are usually very extensive. In order to 
deal with the extent and complexity, developers often use the strategy 
of emphasizing several important innovations, and for the rest, provide 
links to all bug reports that were closed or commits that were made 
during development of the released version.

However, even this amount of raw information does not cover every 
change of the program’s behavior. There will likely be unforeseen rela-
tions, unintended consequences or regressions to previously fixed errors. 
Every new version will have its own unexpected behavior. When we take 
this insight and multiply it by the number of software components used 
in one project, we may start to wonder how any software development is 
possible at all. The answer to this question lies in the constant effort to 
stabilize the components (debugging) in order to make them behave pre-
dictably. If a program is developed long enough, it might achieve what is 
called “maturity”, which means that all major features are implemented 
and stabilized and that it now needs rather small modifications aimed at 
maintenance. And small modifications mean lower chances of introduc-
ing unexpected behavior. At this point, most of the unpredictability is 
eliminated and the unreliable mediators turn into mostly unproblematic 
intermediaries.

Of course, for any software development project, it is advantageous to 
mobilize programs that are generally considered mature and thus stable. 
It reduces the amount of friction, frustration and workarounds needed 
to run the project. However, old and mature programs will not provide 
all the cutting edge functionality which may be appealing for automat-
ing tasks that until now had to be done manually. As a result, develop-
ment projects strive to balance the degrees of stability and innovation in 
the choice of their tools. Therefore, any project represents a blend of the 



125Mediation and Resources Inside a FOSS Project

OBSAH 

agreed upon tools that introduce certain degrees of uncertainty together 
with their functionality.

The amount of information present in a  project, together with an 
intricate network of interrelations and mutual dependencies, creates 
a  barrier that is not easily overcome. There is certainly a  considerable 
knowledge load assumed. I  can illustrate this with my entering into 
the field and assuming the role that allowed me to be a participant ob-
server. I had been using Linux and open source software for several years 
prior to my research and it was still a challenging process for me. In my 
memos, I made a brief list of things I had to do before I could make the 
first contribution:

discover a blog post on planet Gnome saying: documentation specialist 
wanted 
set up an IRC client 
connect to the IRC channel #pitivi on Freenode 
negotiate my role in the project 
install a Linux distribution as a second operating system on my computer 
install the dependency packages 
install development version of Pitivi by running an automated script 
get familiar with the application (download sample video file and play with 
it) 
get familiar with the user documentation 
go through a documentation to-do list of one of the developers 
go through documentation bugs filed against the project 
set up a suitable text editor 
get familiar with the Mallard markup language 
get familiar with the Git version control system 
create a Github account 
download the Pitivi Git repository 
create my own branch and set up a Git repository on Github 
share link to the Github repository to others 
learn the “commit etiquette”

Note that the points are very different in extent. Some of them (set up an 
IRC client, for example) took only minutes, while the others (like getting 
familiar with Git) required days of iterative effort. The self-documenting 
nature of activities associated with FOSS development plays an im-
portant role in the process. For most of the tasks, there were resources 



OBSAH 

126Mediation and Resources Inside a FOSS Project

online that provided information on how to achieve them. There are 
manuals, troubleshooting posts on forums and blog posts on how to set 
up an IRC client and connect it to a channel. There are wiki pages dedi-
cated to installing dependencies and the development version of Pitivi. 
There is a manual describing the Mallard language syntax. And there is 
a whole book online on how to use Git. One can follow the instructions, 
step by step, to get results with little knowledge about what is going on.

However, it is only when the bare information is related to itself 
during an intentional course of action that knowledge arises. It was only 
when I became familiar with the current state of the application, its user 
documentation and a list of issues that I was able to start contributing. 
The triangulation between information on how the application behaves, 
how this behavior is represented in documentation and what the known 
issues are allowed me to possess knowledge that oriented my actions. 
All other points from the list above could be labeled supportive. This is 
not to say that they are not important. I  would not have been able to 
contribute one bit without a  text editor for example. But a  text editor 
does not specify the content of contribution, just as an IRC client does 
not specify the contents of discussions. And neither does Git or the other 
tools. It was the triangulation, which was aimed towards comparison of 
the current state of documentation and the state that could be reached, 
that provided guidance for content.

Applied to programming, this takes us back to Peter Naur’s definition 
of the practice as matching a significant aspect of a real world activity 
to formal symbol manipulation (Naur, 1985), something that we could 
call modeling. The significance of modeling for software development is 
highlighted in a blog post of one of the main developers of Light Table, 
a text editor that was mentioned on Pitivi IRC channel as a new and pos-
sibly useful tool. In the post, its author is trying to argue against the new 
trend of considering programming a new literacy:

Reading and writing gave us external and distributable storage. Coding 
gives us external and distributable computation. It allows us to offload the 
thinking we have to do in order to execute some process. To achieve this, it 
seems like all we need is to show people how to give the computer instruc-
tions, but that’s teaching people how to put words on the page. We need the 
equivalent of composition, the skill that allows us to think about how things 
are computed. This time, we’re not recording our thoughts, but instead the 
models of the world that allow us to have thoughts in the first place.



127Mediation and Resources Inside a FOSS Project

OBSAH 

We build mental models of everything – from how to tie our shoes to the 
way macro-economic systems work. With these, we make decisions, predic-
tions, and understand our experiences. If we want computers to be able to 
compute for us, then we have to accurately extract these models from our 
heads and record them. Writing Python isn’t the fundamental skill we need 
to teach people. Modeling systems is.

The author of the post argues that writing source code is not the key ac-
tivity in software development. The most significant activity is to create 
models according to which source code is written. There is a large con-
tingency in which activities can be modeled or mapped. As we have seen 
earlier, Keil-Slawik pointed this out with his claim that programs do 
not have to follow the sequential constraints of mapped activities (Keil-
Slawik, 1992, p. 182). The author of the blog post expresses it in this way:

While properties of physical modeling are useful to us as guiding principles, 
the digital world offers us an opportunity to step out of their limitations.

When facing such a contingency, it is commonplace that rules are formu-
lated and taught and that experience is associated with increased perfor-
mance. This is why the author claims that modeling is the “fundamental 
skill we need to teach people”. However, modeling is not so independent 
from writing source code as the blog post seems to imply. The character-
istics and possibilities afforded by programming languages and libraries 
interfere heavily with how the models are implemented in the end. There-
fore, creating functional models requires the whole process.

Such a process is usually iterative and depends on surrounding enti-
ties for providing instructions and feedback. Although most interfaces in 
this environment provide rudimentary feedback by not working, giving 
an error message or performing an unintended operation if not handled 
properly, there certainly are sources of more elaborate instructions and 
feedback. As already noted in prior research (Hemetsberger & Reinhardt, 
2006; Lee & Cole, 2003), browsing developer documentation, or more 
importantly re-experiencing communication from chat or mailing list 
archives, can be very instructive or even provide feedback (by respond-
ing to a particular search query). To be sure, hybrid cases of maintainers 
providing a link to documentation or archives in response to a newcomer 
query are common. But adaptive iterative feedback is the area where 
humans fit in. From guidance during setting up the development envi-



OBSAH 

128Mediation and Resources Inside a FOSS Project

ronment to reviewing the finalized commits, humans, in particular main-
tainers, are able to provide sophisticated feedback to a newcomer and 
guide his actions from the start. In this way, they are compensating the 
knowledge needed to take purposeful action in this complicated environ-
ment until the newcomer develops his or her own.

Naturally, this is a time consuming process for both sides and so one 
would think that there should be reciprocity, in that the possible contri-
bution the newcomer could make is worth the time spent on guiding him 
or her. But most of the time (the students of GSoC being an important 
exception), there is no contract that would obligate either party to any-
thing. Thus, the guiding relationship with a newcomer is based on a tacit 
sense of what seems to be worth it. And with the topic of worth, we are 
approaching the question of how resources are used in free and open 
source software development.

5.2 Resources Driving Development

Now that I  have exposed what meanings mediation has in the context 
of free and open source software development, it is time to focus on the 
second part of the question that drives this endeavor, that is, the ques-
tion of pooling resources. Software development is a costly activity, yet 
there are software development projects that offer their products for free 
(gratis). Up until this point, there were several clues in the text for how 
this is possible. Let me pursue them further.

5.2.1 Volunteer Effort
Most FOSS projects start as volunteer projects to which developers con-
tribute in their spare time. Pitivi is no exception in this regard. It was 
started as a student project and although some of its developers eventu-
ally got full-time jobs working on some of the underlying technologies, 
Pitivi itself is still a volunteer project. Thus, the continuous existence of 
the project depends on the ability to attract new volunteers and keep them 
engaged. Someone has to spend time writing the source code, reviewing 
it, making design proposals, writing developer and user documentation 
and translating the interface and documentation. Software development 
is not simple, nor cheap. But still, there are many volunteer projects that 
manage to keep the inflow of resource high enough to survive. How is 
this possible?



129Mediation and Resources Inside a FOSS Project

OBSAH 

To achieve this, the project needs to advertise itself as producing 
a well-designed tool to provide a useful functionality and doing things 
the right way. Or, in other words, it needs to present itself as worthy of 
contribution. There is a specific page on the Pitivi website which targets 
potential contributors. This page serves as an index of communication 
channels and development platforms, but also strives to provide ration-
ales for contribution. The quality of the overall design is demonstrated 
with the modular architecture that allows for reusing of functionality 
worked into the underlying libraries. Being a  well-designed software, 
Pitivi has many users, many developers and a long history proving the 
project’s resilience. This implies several advantages for newcomers: they 
contributions will be distributed widely and so they will be able to affect 
the experience of many users and the number of developers and history 
length means that they will be joining a  well-established project with 
maintainers who will be able to mentor they and review their contribu-
tions appropriately. Strategically, it also means that the newcomers will 
not be at the mercy of decisions made by a single person, as might be the 
case in one-man projects. At the end of the rationale, emphasis is placed 
on the single most important point: “when you contribute to Pitivi, your 
time is not lost”.

Time is a valuable resource and even more so when spent by a highly 
qualified workforce. There is no one else who could contribute to a project 
because, as we have seen, high qualification is necessary to overcome the 
barrier to involvement. Therefore, it is no surprise that the demographic 
from which I have seen most of the contributors originate was the one 
that abounds with time and qualification  – students. Considering that 
Pitivi was a student project in the first place, that its current maintainers 
got involved when they were students and that current newcomers are 
also students in most cases, this seems to be the most common back-
ground among contributors.

This is so for several reasons. The first is that there is institutional 
support for student involvement in open source projects. Once a year, 
Google launches its stipend program called Google Summer of Code. It 
allows organizations managing open source projects to select students 
who will be paid to contribute over a period of a few months. However, 
there are several limitations that reveal interconnectedness with areas 
outside software development. First, the organizations involved in the 
program must develop software under a license approved by the Open 
Source Initiative (OSI). Founded in 1998, this California based standards 



OBSAH 

130Mediation and Resources Inside a FOSS Project

body serves as a maintainer of the Open Source Definition132 and a reviewer 
of popular licenses. In this configuration, the rules that for some (tra-
ditionally in the free software movement) have ethical or moral signifi-
cance translate into eligibility to gain resources.

Second, the students must be able to provide a certificate of their en-
rollment into an accredited institution. Furthermore, they must be eligi-
ble to work in the country in which they will reside during the program. 
Finally, students residing in countries with whom the U.S. law prohib-
its engaging in commerce are not eligible to participate. Here, we can 
see how the program is connected to the countries of residence of the 
respective parties. In the present context, the approval of a  license by 
the OSI and a decision to use the license by an organization developing 
software, together with an approval from an educational institution, all 
while taking place in the right geopolitical area, creates an intersection 
at which the quality of applicants only begins to be assessed and through 
which the funds are potentially available.

The incentive of earning several thousand dollars in the period of 
a few months is the first at hand when we consider the motivation of new 
contributors (provided they are involved in the stipend program). But 
there are also other incentives. Starting with the most pragmatic ones, 
further learning and experience in the field of study is obvious. In this 
regard, active contribution to a FOSS project is similar to an internship. 
And considering that developers in some projects are paid by private 
companies for their work, it might also be an “internship” very close to 
a potential future employer. Furthermore, there is one important advan-
tage for students contributing to FOSS projects. The combination of the 
project’s  transparency and emphasis on recording authorship allows 
students to demonstrate their skills by pointing to the work that they 
have already done, which is documented in publicly available records. 
Just as personal repositories create leverage for reviewing and including 
commits from a contributor, the commits included in the main reposi-
tory create leverage for accepting an applicant.

Apart from the pragmatic ones, there are also other incentives to vol-
unteer. One of them is based on the value of the developed software and 
was expressed most strongly at the start of a fund-raising campaign:

132 This is a rather short document defining the open source development method in 
ten points. The full text is available at http://opensource.org/docs/osd.

http://opensource.org/docs/osd


131Mediation and Resources Inside a FOSS Project

OBSAH 

Free and Open Source video editing is something that can help make the 
world a better place, as it gives people all around the world one more tool 
to express themselves creatively, fight oppression, create happiness and 
spread love.

The expression does not go as far as changing the world, it is not revo-
lutionary. It just aims to add one thing to the list of what is good in the 
world. The assets that the software offers permeate personal domains 
(happiness and love), possibly reach to professional relations (creative 
self-expression), but might also serve a  political struggle (fighting op-
pression). This hints at the modes of existence133 that the developers envi-
sion for their creation when it leaves the haven of the main repository.

Furthermore, one of the Pitivi maintainers shared his motivations in 
a presentation at the GNOME User and Developer Conference. Accord-
ing to him, there is a variety of subtle motives like fixing an annoying 
error, making friends with other contributors and thriving from the en-
thusiasm and trust that runs in the group. But one of the major motiva-
tions is a value which, according to his own words, resonates with most 
developers working on Pitivi. It is expressed on the main page of the 
Pitivi website as a text in the largest font:

We believe in allowing everyone on the planet to express themselves through 
filmmaking, with tools that they can own and improve.

The expression has two important dimensions. First, the words “eve-
ryone on the planet” means (as explained by one of the maintainers in 
a presentation given at the GUADEC conference) that the software is de-
veloped explicitly with no market segmentation in mind. The software 
should be suitable for anyone from students or activists to independent 
professional filmmakers. In this, the developers see one of the main dif-
ferences between their program and software that is developed for com-
mercial purposes and has to be tailored to a specific group of customers. 
In a way, the Pitivi maintainers claim that providing the software free 
of charge liberates them from the restrictions originating from classical 
business strategies.

For the second dimension of the expressed value, the words “own” 
and “improve” are key. According to this view, users truly own the 

133 In the sense which Latour attaches to this expression (Latour, 2007a, p. 24).



OBSAH 

132Mediation and Resources Inside a FOSS Project

program only when there is the possibility to see its internals, discover 
how it works, modify it or reuse some of the work that has been done. 
With proprietary software, this is not possible by definition. Its source 
code is not distributed publicly and any attempts at reverse engineer-
ing or modifications are forbidden by licenses. From this point of view, 
users of proprietary software only get the right to use the software with 
all other rights denied. Therefore, users are dependent on the decisions 
the provider of proprietary software makes and are left with no options 
to steer the direction of development or maintenance. In the open source 
model, a  qualified user would be able to trade his right to participate 
in the decision-making process for spending time volunteering for the 
project. In this context, ownership is enabled by access to information 
(most importantly the source code).

This point is based on one of the basic ideas formed by the movement 
as a criticism of proprietary software. One can find it in popular interpre-
tations of the GNU project such as the one provided by the British actor 
Stephen Fry:

If you have, I don’t know, plumbing in your house, it may be that you don’t 
understand it, but you may have a friend who does and they may suggest 
you move a pipe here or stack cowl there or valve somewhere else. And 
you’re not breaking the law by doing that are you? Cause it’s your house, 
you own the plumbing. You can’t do that with your computing, you can’t ac-
tually really fiddle with your operating system and you certainly can’t share 
any ideas you have about your operating system with other people because 
Apple, Microsoft who run the two of most popular operating systems are 
very firm about the fact that they own that and no one else can have any-
thing to do with it. Now this may seem natural to you, why shouldn’t they? 
But actually, why can’t you do with it what you like, why can’t the community 
at large alter and improve and share, that’s how science works after all. All 
knowledge is free and all knowledge is shared in good science. If it isn’t, 
it’s bad science and it’s a kind of tyranny.134

Fry uses the classic opposition between big companies that only provide 
a restrictive license for using software they own and free software that is 
unrestricted in this sense and therefore can be owned by anyone, while 

134 Stephen Fry talks about free software (GNU 25th Birthday). Published: 2009-04-28. Ac-
cessed: 2015-03-25. Available at: https://www.youtube.com/watch?v=YGbMbF0mdPU.

https://www.youtube.com/watch?v=YGbMbF0mdPU


133Mediation and Resources Inside a FOSS Project

OBSAH 

the latter alternative is further legitimized by the positive associations 
in the images of “community” and “good science”. However, ownership 
in this sense relies on the potential for engaging with the internals of 
a program (or an operating system) and therefore it is substitutable (if 
someone does not understand it, someone’s friend might). But my point 
is that the relationship between information access and ownership goes 
one step further, because one can have the source code available and still 
not own the software any more than if it were proprietary. One needs 
to engage with the information available, appropriate it and develop 
knowledge about it in order to really own the thing. As I will show at the 
end of this section, such a relationship between knowledge and owner-
ship serves as a strong incentive for involvement of private companies in 
FOSS projects.

However, the trade-off between spending time and gaining rights is 
probably not the most important part of volunteer motivation, if only for 
the fact that contributing consumes large amounts of time and leaves 
the desired result uncertain (bugs may prove to be harder to fix than 
expected, commits might not pass review or other design choices may 
prevail). But there is an added value to this trade-off that takes it to a new 
level of attractiveness – the results of the volunteer work are made avail-
able to everyone who uses the software. The volunteers know they are 
giving a  gift to the wider community and they are prepared to accept 
praise for it. What they give away in hours of skilled work for free, they 
gain in status. Apart from providing positive gratification, the status can 
also be translated into resources. Being employed for one’s  individual 
merits is one way of doing so. Public fund-raising may be another one.

When Pitivi version 0.93 was released, one maintainer emphasized 
the volunteer nature of the project on his blog: “0.93 is the result of con-
tinued efforts in our spare time – occasional hacking during vacations, 
nights and week-ends”. The emphasis was not random, it was setting the 
stage for a  fund-raising campaign that aimed to intensify the develop-
ment by providing funds to the developers so that they could spend more 
than spare time on the project. “Just imagine what could be achieved if 
Gary and Randy could be funded to work full-time towards bringing us 
to 1.0!” reads the next sentence.

The fundraising campaign was no easy undertaking. It required 
preparations months in advance – an agreement with a legal entity rep-
resenting the project was made, a video was shot, a separate website was 
established, a press release was published and payment and voting mech-



OBSAH 

134Mediation and Resources Inside a FOSS Project

anisms were put into place. What the fundraiser meant for the developers 
(and why they invested so much effort into setting it up) was that they felt 
they spent a lot of time on it for free on their own and now they needed 
a push to finally leave the testing stage and reach the 1.0 stable version. It 
was a moment charged with emotional valence, even though the develop-
ers felt justified in asking for the funds. One of them wrote this into his 
blog post:

I’m writing this the day before launching the campaign, and I  have the 
website in the background, taunting me with its “0 € raised, 0 backers” 
message. Fortunately I also have the spinning social widgets to cheer me 
up a bit, but it’s not exactly enough to get me rid of my anxiousness. I know 
that what we do is right, and that requesting money for stabilization first is 
the correct and honest thing to do.

At first the fund-raising campaign went well and received coverage from 
news sites that delivered it to audiences interested in free and open 
source software. The coverage was quickly translated into funds as the 
news got to potential donors. However, after the initial burst of enthusi-
asm, the campaign stagnated. It soon became clear that the fundraising 
campaign would not achieve the target amount. This sparked a discus-
sion about a fallback plan:

Eric: Also, maybe you should set a date when you make a plan, considering 
there is a chance you won’t get to 35.000? 
Steve: “make a plan” ? 
Steve: Eric, ? 
Steve: fall-back plan ? 
Steve: Gonna go sleep, if that was your question Eric the plan remains 
unchanged, we just do it with less money and more good will :) 
Steve: Not that good will was lacking, but it’s an apt replace-
ment for money, just means it will take more time for us to do 
the stabilization as we’ll go on taking contracts on the side

Even though Steve claims that money and will are interchangeable, they 
seem to have different characteristics. The will to work on the software is 
there, no matter how much money is present. Money just provides more 
time for the will to materialize. More money implies a smaller number 
of other contracts and more focus on Pitivi development. Thus, money 



135Mediation and Resources Inside a FOSS Project

OBSAH 

seems to play a small role in deciding whether to work on the software 
or not. It plays a much bigger role with regard to how much time the vol-
unteers are able to spend, which translates to the speed of development. 
This appears to be the opposite of how private businesses traditionally 
operate. There, the investment return is the biggest criterion in deciding 
whether to develop a piece of software or not. By this, I don’t mean to 
imply that the open source method of development, being completely 
opposite to the proprietary, is incompatible with any form of business. As 
we will see in the following paragraphs, it is quite the contrary.

5.2.2 Formal Organizations
The economy of free and open source software development does not 
stop with the motivation for contribution. Besides humans, all other en-
tities present in a project must have a reason to be there. The whole in-
frastructure described up to now is dependent on a continual inflow of 
resources. In other words, someone has to provide the server time for 
running Git repositories, Bugzilla, the IRC channel or the project’s wiki. 
Without these elements, free and open source software development 
would not be possible in the way it is now commonly performed. The 
presence of these elements is possible due to the existence of non-
profit organizations and the specific business models of some private  
companies.

First, there are non-profit organizations like the GNOME Founda-
tion. Operating from a donation or sponsorship based funds, the foun-
dation provides several key services for the individual projects while also 
maintaining libraries that form a low-level programming infrastructure. 
The foundation serves as a  legal body that represents the projects in 
formal relationships with other organizations. This allows the projects 
to have fundraising campaigns or to participate on the GSoC stipend, 
even though the informal mode of organization of the projects them-
selves would disqualify them in such circumstances. Thus, the founda-
tion shields the individual projects from the necessity of establishing 
formal organization. In a way, it provides them the opportunity to reap 
some of the benefits formal organizations enjoy while allowing them to 
stay informal.

Furthermore, the foundation also controls some server infrastruc-
ture, which is provided for individual projects. Therefore, the Pitivi main 
repository is hosted by GNOME. Also, Pitivi uses the Bugzilla instance 
provided by GNOME as its issue tracker. When I  entered the project, 



OBSAH 

136Mediation and Resources Inside a FOSS Project

I was made aware that it was not always like this. In the past, the main 
Pitivi repository was hosted elsewhere and there was a duplicate hosted 
by GNOME that was used to collect translation and documentation con-
tributions. This points to another type of service that the foundation 
provides. It is able to attract contributors that translate and document 
the software developed by individual projects. It usually takes much less 
time to translate or document a program then to develop it, and therefore 
it makes sense to associate those activities under an overarching body so 
that the contributors may move from one project to another and still stay 
on the same infrastructure.

Second, there are services that are provided by some companies for 
free. A  typical example of such a case are personal repositories of the 
individual developers. These are hosted by GitHub, a  company which 
specializes in managing Git repositories. The company makes revenue 
by offering paid plans for individuals and organizations that require 
private repositories. However, there are free plans for both types of cus-
tomers, which offer an unlimited number of public repositories. This 
configuration is tailored to be used as an intermediary in volunteer pro-
jects. A newcomer aiming to contribute to a FOSS project just needs to 
create an account and configure a repository to use the service. For the 
company, it serves a  marketing function and creates a  positive public 
image. But more importantly, by drawing a large number of developers 
to use its services for free, the service is becoming the de-facto standard 
in the market segment of providing source code management services.

The case of the main Pitivi repository is different. It is located in 
a space provided by the GNOME Foundation which in turn has its servers 
hosted by Red Hat. Red Hat is also a company with a business model re-
volving around the open source development method, but one which is 
quite different from that of GitHub. This constitutes the third option. Red 
Hat is sponsoring a number of free and open source projects, ranging 
from the Linux kernel to the Fedora Linux distribution or the GNOME 
desktop environment. The technologies derived from these projects form 
a portfolio of what the company is able to deploy and maintain for a cus-
tomer. However, the software itself is not sold; it is the surrounding ser-
vices (deployment and maintenance) that create revenue.

In this context, communities around the projects Red Hat sponsors 
serve as sources of innovative and tested technologies, while also provid-
ing a skilled workforce pool (which is already familiar with the products) 
to recruit from. On the other hand, the company keeps the inflow of re-



137Mediation and Resources Inside a FOSS Project

OBSAH 

sources to the projects by providing server time, sponsoring events and 
acting as a motivational force drawing in those who seek careers related 
to open source technologies. At the same time, the developed software 
is still publicly available, as it employs licenses approved either by the 
Free Software Foundation or the Open Source Initiative. The close re-
lationship that a  business might establish with a  FOSS project can be 
illustrated precisely by the case of Red Hat:

But of course, all of that value that Red Hat is able to offer its customers is 
built on the contributions of the much larger open source community, both 
as a whole, and the specific communities that feed directly into Red Hat 
products.
… 
Our most notable involvement is with The Fedora Project, the results of 
which feed directly into Red Hat Enterprise Linux.
… 
Fedora releases come out every six months, showing the edge of innovation 
and new features. Red Hat engineers participate in that process from the 
beginning. (However, 65–70% of Fedora’s code is maintained by volunteers.) 
Then, Red Hat dedicates its quality assurance resources to testing, harden-
ing, and certifying those features to ensure that they meet the requirements 
for enterprise-level interoperability and performance. Code that started in 
the upstream community becomes the code that Red Hat customers … rely 
on to solve their daily business problems.135

However, this is only half of the picture. After being used and modified by 
Red Hat, the source code is made publicly available again which makes 
it possible to be reused in a different community-run Linux distribution 
called CentOS. From the CentOS perspective, the process is described in 
the following way:

The upstream vendor is using open source (mostly GPL) software in their 
business model. They take software that other people write (Gnome.org, 
X.org, KDE.org, OpenOffice.org to name a few). They repackage the source 
files into RPM format for redistribution. Because they chose an open source 

135 Q&A. What Is the Secret of Red Hat’s Success? An article linked from the official Red 
Hat website. Published: January 2012. Accessed: 2015-04-09. Available at: http://timre-
view.ca/article/513.

http://timreview.ca/article/513
http://timreview.ca/article/513


OBSAH 

138Mediation and Resources Inside a FOSS Project

model to obtain the software they distribute, they must provide their source 
code to others. That is how the GPL works. The upstream vendor provides 
much added value by creating the Source RPMS and distributing them. They 
also fix problems in software and provide feedback to the software develop-
ers … this is what makes open source software work.

The CentOS Project takes the publicly available source packages (SRPMS) 
provided by the upstream vendor and creates binary (installable) packages 
for use by anyone who wishes to use them.136

A  similar type of relationship can be found between the GStreamer 
project and Collabora, a company sponsoring its development (with the 
difference that after modification, the source code is integrated back 
into its original community source instead of being reused by another 
project). Collabora employs several GStreamer developers (some of 
which contribute to Pitivi in their free time) and for Pitivi, it provides 
a server for building and testing daily versions of the program. The em-
phasis is put on developing GStreamer and other backend technologies, 
as these provide the functionality that Collabora can offer to its custom-
ers in turn. But in the past, there were also developers assigned by the 
company to work on Pitivi itself, as it represented the storefront demon-
strating what the underlying technologies are capable of.

However, the relationships between sponsoring companies and com-
munities often exhibit tensions.137 Development decisions preferred 

136 Frequently Asked Questions about CentOS in general. Last edited: 2015-03-20. Accessed: 
2015-04-09. Available at: http://wiki.centos.org/FAQ/General#head-4b2dd1ea6dc-
c1243d6e3886dc3e5d1ebb252c194.
137 A well-known example of such tensions was the relationship between the commu-
nity around the Ubuntu Linux distribution and Canonical, its sponsoring company. 
Canonical was often criticized by members of the community for taking decisions 
behind closed doors and introducing them as fait accompli. The tensions culminated 
in 2013, when the website www.fixubuntu.com was established to instruct Ubuntu 
users on how to deactivate offending features introduced to Ubuntu by Canonical. At 
first, the company attempted to take down the website by using its ownership of the 
Ubuntu trademark, which resulted in an outburst of controversy. Eventually, Canoni-
cal founder Mark Shuttleworth apologized for this step and the website is accessible to 
this day. Such tensions are largely absent from my descriptions because I did not run 
into them during my fieldwork. This may be so because Pitivi is largely sponsored in-
directly (for example through infrastructure provided by the GNOME Foundation) or 
the involvement of direct sponsors is limited and does not currently provide developer 

http://wiki.centos.org/FAQ/General#head-4b2dd1ea6dcc1243d6e3886dc3e5d1ebb252c194
http://wiki.centos.org/FAQ/General#head-4b2dd1ea6dcc1243d6e3886dc3e5d1ebb252c194


139Mediation and Resources Inside a FOSS Project

OBSAH 

by companies and those preferred by communities (or their parts) can 
diverge. In such a tug-of-war, companies have a more advantageous posi-
tion, as they are usually able to mobilize developers that they employ to 
spend more hours of work than volunteers. Combined with the rule that 
decisions (rather the smaller ones, bigger decisions are left for governing 
bodies like councils in which, however, the companies also have their 
representation) are made by the ones carrying out the work (and review), 
companies can gain an upper hand just by employing the key actors. On 
the other hand, a community around a sponsored project is very valu-
able for any company and so their steering power is counter-checked by 
the possibility of the community abandoning or forking the project if 
a controversy reaches sufficient intensity. Volunteers are not assessing 
the project only before they start contributing, this is an ongoing process. 
Therefore, a perceived lack of good design decisions combined with the 
feeling that one does not get to be heard can lead to lowered willing-
ness to contribute. As a result, the relationship between companies and 
communities involves careful balancing. Companies may lose a wealth of 
volunteers and risk competition if the project gets forked. Communities 
may lose resources from sponsorship and risk criticism for duplication 
of efforts if forking takes place.

But to return to the resources issue, one can ask: how can there exist 
a business model around software that is (together with its documenta-
tion) publicly available? The answer lies in the strategy I already men-
tioned with regard to Red Hat. It is not the software itself that is sold; 
the services around it are. The publicly available information is complex 
enough to require a significant amount of effort to be processed in order 
to be put to use. This can be demonstrated by a situation when a new-
comer (Ben), after finishing his first bigger task, thought about taking on 
a much more demanding one:

Steve: As for the task you’re thinking about, to be done correctly, it would 
certainly require changes in blender, and intimate knowledge of its code 
base, plus willingness from their upstream to expose an API138 
Steve: I am thus strongly hinting at you that it is *hard*, and will require 

time (as in the case of Collabora which provides developer time for GStreamer, but for 
Pitivi per se, it provides only a server).
138 Application Programming Interface defines a set of commands that are used when 
one program uses functionality from another program.



OBSAH 

140Mediation and Resources Inside a FOSS Project

changes in blender to do correctly 
Steve: I don’t know if you already had a look at blender’s code, but 
it’s *huge* 
Ben: I suppose. 
Ben: I will need to read Blender code. 
Ted: I can concur on that, maybe I was not clear enough (but I thought 
I was) to Ben earlier today when I was hinting that you are *vastly* under-
estimating the complexity of something like integrating blender with pitivi 
Ted: I mean even if it was one of the gstreamer core devs doing it I would 
imagine a year of work 
Ted: Ben you realize that Pitivi is 18 thousand lines of code and Blender is 
*2 million* lines of code? you can’t just go “read its source code” :) 
Ted: I mean you can… but we’ll see you again in 10 years 
Jim: reputedly the VSE (video sequence editor) in blender is a nightmare 
Jim: terrible C code from the early 90s that nobody loves

In this conversation, the Pitivi maintainers (Steve and Ted) discourage 
Ben from taking on the task because of the difficulties it presents. To get 
an impression, it suffices to go through the emphasized points (marked 
with asterisks): the task is hard, the source code is huge (which is reiter-
ated by stating that it has 2 million lines of code), and Ben is vastly under-
estimating the complexity of the task. The maintainers point out that this 
is not a suitable task for someone who has just been around for several 
months, because even for someone as knowledgeable as a  GStreamer 
core developer, the estimated time for completing the task would be 
a year. The conversation culminates in the statement that “you can’t just 
go read its source code”, pointing out that approaching such a task head 
on would require an amount of resources (illustrated by the expression 
“see you again in 10 years”) that is out of the scope of any individual and 
that the codebase could perhaps be better appropriated by interacting 
with it (doing smaller tasks). To this, Jim adds a remark about the state of 
the source code (“terrible C code from the early 90s that nobody loves”, 
it is a “nightmare”), which, together with its length, is also a significant 
indicator of the difficulty of dealing with it.

Such discouragement from experienced developers is indicative of 
how large barrier complexity is even when approaching documented and 
publicly available source code. For a more elaborate description of the 
problem, I can reach for the one provided by Brooks in his classical essay 
on programming:



141Mediation and Resources Inside a FOSS Project

OBSAH 

Large-system programming has over the past decade been such a tar pit, 
and many great and powerful beasts have thrashed violently in it. Most 
have emerged with running systems – few have met goals, schedules, and 
budgets. Large and small, massive or wiry, team after team has become en-
tangled in the tar. No one thing seems to cause the difficulty – any particular 
paw can be pulled away. But the accumulation of simultaneous and inter-
acting factors brings slower and slower motion. Everyone seems to have 
been surprised by the stickiness of the problem, and it is hard to discern the 
nature of it. But we must try to understand it if we are to solve it. (Brooks, 
1995, p. 4)

Although this characterization of the difficulties associated with software 
development is dated, it still retains its point. Even though it is normal 
today to make documented source code publicly available, it does not 
mean that the complexity barrier will disappear.

Returning to the question of business models, the answer seems to 
lie in the fact that employing developers who are already familiar with 
source code represents a  considerable advantage for any company, as 
it is able to put the information to use without the need to spend large 
amounts of resources on overcoming the barrier. In other words, the 
company’s competitive advantage is possessing knowledge (through em-
ploying developers). And it seems that possessing knowledge provides 
an advantage to such an extent that giving away the information is not 
threatening the business strategy.139 This highlights the value (and the dif-
ference) of possessing knowledge compared to just holding information.

Indeed, when we look at what the companies involved advertise as 
their competitive advantage, we can see that it is the employment of ex-
perienced contributors who carry significant expertise. Collabora is par-
ticularly explicit about this on their website:

Whether you are getting ready for a new product development or upgrading 
a current one, adopting Open Source can seem challenging. Collabora will 
save you time and money by helping you leverage existing Open Source 

139 Moreover, as Josh Lerner and Jean Tirole note, making source code publicly avail-
able requires it to be adjusted to make orientation and contribution easier (Lerner & 
Tirole, 2002, p. 226). Therefore, even though the barrier is being actively lowered, it is 
still so high that knowledge of the codebase is very valuable.



OBSAH 

142Mediation and Resources Inside a FOSS Project

software so that you can focus on the truly differentiated value of your 
product.140

Collabora employees are not just professional Open Source developers. They 
are also longtime contributors and form an integral part of the Open Source 
community. And the years they have spent exploring projects and distribu-
tions and forming relationships with members of the Open Source commu-
nity have resulted in expertise they can pass along to you.141

Browsing through Collabora’s portfolio, it offers the following services 
around GStreamer: consulting assistance, training, custom develop-
ment, architecture (design review and creation). Note that three of the 
four offered services do not involve writing new (or modifying current) 
software and selling it as a product. The one service that does (custom 
development) could potentially involve writing source code that is not 
made public. This is also explicitly indicated on the website:

We believe that developing the vast majority of software publicly in a col-
laborative fashion must become the standard. Of course there will always be 
room for differentiated value; we don’t suggest that every line of code must 
be made public (although that would be nice). Assisting customers maximize 
their use and contributions to Open Source is our raison d’être.142

This excerpt suggests that extensions of the publicly available source 
code that are kept private are one of the ways to add a  differentiated 
value to the customers’ product. However, the text hints at a preference 
to make even the extensions public (“that would be nice”) by integrating 
it back into the publicly available source code.143 This process is elabo-
rated elsewhere on the website:

140 Services: Planning. Collabora marketing materials. Accessed: 2015-04-09. Available at: 
https://www.collabora.com/services/planning.html.
141 Services: Guiding. Collabora marketing materials. Accessed: 2015-04-09. Available at: 
https://www.collabora.com/services/guiding.html.
142 Paving the Way. Collabora marketing materials. Accessed: 2015-04-08. Available at: 
https://www.collabora.com/open-first/open-source.html.
143 To protect the extensions from the necessity of being published, which would 
normally be required by the GNU GPL, some companies resort to strategies like dual 
licensing or requiring contributors to sign contribution license agreements (CLA), 
which state that the code they write may be relicensed in the future. We can see that 

https://www.collabora.com/services/planning.html
https://www.collabora.com/services/guiding.html
https://www.collabora.com/open-first/open-source.html


143Mediation and Resources Inside a FOSS Project

OBSAH 

Collabora has helped many customers to upstream their software contribu-
tions to existing Open Source projects. Compliance with the terms of Open 
Source licenses governing the software our customers use is of paramount 
importance to Collabora. Whether the code is originally developed by Col-
labora or our customers, we help our customers lower their maintenance 
burdens by ensuring that all relevant code is merged upstream. Collabora is 
committed to maintaining the code as part of our involvement in the Open 
Source community.144

This excerpt shows that integrating extensions back into the open source 
codebase is not only a potentiality, but an ongoing practice. The incentive 
for Collabora customers to do this is expressed here as the possibility 
to “lower their maintenance burdens”. The reason for this is that creat-
ing modifications of software that is held privately constitutes a parallel 
(privately forked) version of the software that has to be maintained sepa-
rately. Such maintenance consists of monitoring the development that 
takes place in public and manually including all modifications that result 
from public development (which may also mean resolving conflicts that 
arise between public and private modifications). It follows that over time 
such an approach requires significantly more resources than integrating 
private modifications into the public source code, in which case every 
subsequent modification is built upon them and consistent with them, 
thus doing away with the costs of separate maintenance. As we can see, 
resharing of modified source code is not only a condition introduced by 
the “viral feature” of the GPL licenses, but it is also backed up by incen-
tives based on cost and effectiveness.

We can see how practiced knowledge empowers volunteers and 
businesses alike, in the sense that it allows them to steer the direction 
of development in FOSS projects. For volunteers, this represents an op-

the GPL requirement to distribute derivative works under the same conditions as the 
original work is problematic for some parties and requires further procedures to be 
dealt with. This may be one of the reasons why so-called permissive licenses (such as 
the MIT or Apache licenses) that lack this requirement have been gaining momen-
tum over the past several years. (What are the Most Popular Open Source Licenses Today? 
A report based on data from Black Duck, a company specializing in monitoring FOSS 
projects. Published: 2014-11-14. Accessed: 2015-05-13. Available at: http://redmonk.com/
sogrady/2014/11/14/open-source-licenses/)
144 Services: Integrating. Collabora marketing materials. Accessed: 2015-04-09. Available 
at: https://www.collabora.com/services/integrating.html.

http://redmonk.com/sogrady/2014/11/14/open-source-licenses/
http://redmonk.com/sogrady/2014/11/14/open-source-licenses/
https://www.collabora.com/services/integrating.html


OBSAH 

144Mediation and Resources Inside a FOSS Project

portunity for raising status, which can eventually be translated into re-
sources through donations, fundraisers or employment. For businesses 
this represents a  competitive advantage in overcoming the barrier of 
technical complexity. This advantage is often monetized in specific types 
of business models aimed at providing services around publicly available 
technologies.

In sum, we are now able to see the rough outline of the network that 
allows many FOSS projects to sustain themselves. The project must be 
able to draw volunteers and motivate them to stay. It may use some of the 
services provided by non-profit organizations or by companies whose 
business model involves free services. Finally, if strategically placed, 
the project may enjoy the benefits of direct sponsorship from a private 
company. Most of these sources are affected by design decisions and 
the quality of implementation within the project, as companies and vol-
unteers alike will evaluate the worth of the project before contributing. 
Therefore, software is often initially developed privately and it is made 
public only after reaching a certain level of completeness, because it is 
at this point that developers are able to demonstrate their skills and mo-
tivation. From the point of view of potential contributors, this serves as 
a guarantee that the initial developers have the ability to reach their goals 
and are willing to do so, as they already invested a significant amount of 
effort before reaching out to public.



145Conclusion 145Conclusion

6
Conclusion

We are now in a position to see the overall shape of a FOSS development 
project. The projects are architected to facilitate and encourage autono-
mous retrieval of information and there are several structures that are 
particularly significant in this regard.

On the most basic level, there is the upstream first principle, which 
implies that the maintenance of functionality inherited from other pro-
grams should be done in the original programs, not in the one using the 
functionality. This is the difference between “being a good citizen” and 
“doing your own thing in your corner.”145 This approach helps to keep 
generalized functionality allocated in reusable libraries. Therefore, the 
functionality does not have to be recreated for each new program, but 
also (and perhaps more importantly) it allows for concentration of exper-
tise around a technology that is considered standard.

Furthermore, licensing is key in establishing conditions for un-
constrained information flows. But, as we have seen in the case of the 
GStreamer library, using just about any license permitting free reuse of 
information does not lead to frictionless sharing. Using non-standard 
licenses (with a clause, for example) introduces the necessity of negotiat-
ing the terms of reuse with some parties and therefore, as Yochai Benkler 

145 It also indicates that free and open source software development assumes a collec-
tive form of authorship, similarly to, for example, users of Creative Commons licenses 
who see the accessibility of their work as an acknowledgment of the intellectual debt 
they have toward their influences. Minjeong Kim contrasts this position with what he 
calls a “private property vision”, in which authorship is seen as an exclusively individ-
ual achievement (Kim, 2007, p. 195).



OBSAH 

146Conclusion

would point out, raises transaction costs (Benkler, 2006, p.  109). As 
a result, the use of standard licenses, recommended by significant parties 
(such as GStreamer developers), or vetted by definition-maintaining or-
ganizations (such as the Free Software Foundation or the Open Source 
Initiative) is imperative for autonomous retrieval of information.

Apart from being part of the sharing infrastructure, licenses can carry 
a significant moral load, while at the same time be otherwise politically 
agnostic. This is the case with the GNU licenses created by the Free Soft-
ware Foundation, which considers hoarding software under different 
licenses a moral fallacy. On the other hand, the GNU licenses explicitly 
preclude restrictions on reuse based on any further terms. This ambi-
guity is also reflected in the images of a “better world” put forward by 
organizations such as the GNOME Foundation. What exactly this better 
world will look like is nowhere specified, but it certainly involves the use 
of the FOSS development model. As a result, the identity of the observed 
organizations is based primarily upon the use of infrastructure defined 
as standard.

Correspondingly, the primary activity is not waging a political fight 
and trying to achieve a  state of utopia. The primary concern here is 
branching out and establishing self-sufficient alternatives. Everything 
revolves around translating ideas expressed in natural language into 
formal languages (either markup, or, more importantly, programming 
languages). Once translated and compiled, the actions devised by soft-
ware developers are fully automated and delegated to the computers 
of their users. This translation is achieved by writing (or making modi-
fications to) the source code. The modifications are tracked by version 
control tools, translated into standardized form and delegated to a public 
repository in order to be appropriated by others. Personal repositories 
then represent sandboxes for experimentation, prototyping and learn-
ing. Once  contributors are confident in their work, they make a  pull 
request to indicate to others an intention to merge the work into the main 
development branch.

What follows is peer review, which is the center of gravity for power 
relations. Compared to the collaborative practices implied by Mediawiki, 
the review process utilizing Git has specific spatial and temporal char-
acteristics. Here, peer review takes place in a  distinct place (personal 
repositories) before the work is incorporated into the main repository. 
On the Mediawiki platform, there are no personal repositories; there is 
one central repository which is by default open to modifications. Peer 



147Conclusion

OBSAH 

review takes place only afterwards, as other users browse the content. 
While this model seems to produce acceptable results for the Wikipedia 
community, the maintainers of the Pitivi project decided to make further 
restrictions in order to avoid spam and vandalism. Considering that the 
Pitivi project is orders of magnitude smaller than Wikipedia and that 
maintaining wiki pages is not the main concern here, it seems reason-
able to suggest that the wiki collaboration model provides the intended 
performance when a certain threshold of number of active users is ex-
ceeded, while the model utilizing Git performs even when the numbers 
of contributors are low.

Proceeding exactly in the opposite direction, debugging represents 
a temporal and local reversal of the black-boxing introduced by source 
code compilation. Debugging is a procedure which translates defects ini-
tially formulated in natural language into formalized descriptions known 
as stack traces. These are part of bug reports which delegate the defect 
and its description into a publicly available issue database and provide 
space for negotiation, initial prototyping and also a reference point. The 
contents of either the Bugzilla database or Git repositories can be seen 
as inscriptions, establishing non-human allies to be mobilized in dem-
onstrating a  claim and persuading others inside or outside a  project. 
Inside a development project, this may be used to alter design decisions 
or allocation of time by individual contributors. Outside of a project, the 
information is used for assessing the project, its health and future pros-
pects. This, in turn, affects the rate of adoption, which is also the rate of 
reaching possible contributors, in a bootstrapping process of becoming 
a standard (or not).

There are conventions that structure the procedures, such as writing 
the source code (the 80 column rule), making commits (the commit 
etiquette) or merging reviewed work (opting for the lowest number of 
conflicts in revision tracking). But it turns out that in some cases, the 
conventions are negotiable. If we look for something more stable, we 
would have to focus on the behavior enforced by the tools used. These 
are not negotiable, and are hard to alter. Granted that tools developed in 
accordance with the FOSS model are preferred, it is in theory possible 
to modify their behavior. But doing so requires effort going beyond the 
modification itself. Either one can opt for modification in cooperation 
with the developers of the tool. In this case, the developers will have to 
be persuaded that the modification is necessary and it will also have to go 
through the standard review process. One can opt for making the modi-



OBSAH 

148Conclusion

fication without cooperating with the developers of the tool, but this will 
establish an alternative version of the tool that will require maintenance 
(including updates from the official version) in the future. As a  result, 
such situations are often dealt with by searching for a different tool that 
fits the requirements.

A  similar dilemma can be found with regard to dependencies. 
However, from what I have experienced, there is a stronger tendency to 
contribute to dependencies than to tools. Some of Pitivi’s core develop-
ers contributed more to GStreamer (its main dependency) than to Pitivi 
itself. This preference seems logical given that dependencies are pre-
supposed in many parts of the source code and without them the devel-
oped program would simply not run. Therefore, switching a dependency 
always means modification to the source code, while switching a  tool 
means that the change is contained within the project’s  infrastructure.

But even though the individual tools may vary, we can always find 
certain types of tools put to use in a project. Together with programming 
languages, tools like text editors, compilers, debuggers or version track-
ing systems establish the necessary minimum for a FOSS project. These 
tools make it possible to perform not only pragmatic action (text editors 
allow for writing, compilers for compiling, version tracking systems for 
pushing and pulling source code around), but also epistemic action  – 
programming languages allow developers to think in a  way that is de-
signed to be automated; text editors allow developers to see the source 
code, or to perform searches; debuggers allow for seeing the internals of 
a program while it is running in order to identify which part is responsi-
ble for an error; version tracking systems allow for seeing differences in 
the source code so that the work of an individual can be known. In this 
sense, the tools serve as the wideware of software development.

At this point, I am closing in on the first question formulated at the 
end of chapter 3 – how do digital texts and software interfaces mediate 
the actions of programmers? The epistemic action performed with tools 
leads to establishing knowledge necessary for contribution. While this 
kind of knowledge is specific for every project, the knowledge needed to 
operate tools is not. In the area of tool use, the knowledge problem can 
be circumvented by resorting to standards, which will not only decrease 
the barrier to entry for contributors, but also make the output of their 
use standard. On the other hand, the problem of decontextualization is 
most pressing in the area of design artifacts. These intermediary results 
of work need to be examined thoroughly each time they appear. As I have 



149Conclusion

OBSAH 

already pointed out, their examination requires the use of tools to be pos-
sible at all, but a consistent use of tools also yields consistent output. As 
a result, deployment of standard wideware facilitates the emergence of 
knowledge in different places; it allows knowledge to “travel”.

This is consistent with the premises developed in chapter 2, which 
describe how the idealizations proposed by Alfred Schütz (1953) work to 
establish reciprocity of perspectives in the digital environment. Infor-
mation is externalized in the conventional form of design artifacts and 
reflection is externalized in the form of standardized tools. Process-
ing design artifacts with the help of tools creates situations suitable for 
establishing interchangeability of standpoints and congruency in the 
system of relevance. Seen from the perspective of Nico Stehr’s  (1994, 
2001) theory, the appropriation that is needed to transform informa-
tion into knowledge is conventionalized with the use of the two types 
of objects. In a sense, tools and design artifacts also help actors to gain 
the command of situational circumstances, which is required for pro-
ducing and applying knowledge. However, as we have seen, developing 
such control over situations is not the sole achievement of an actor, but 
of an actor using standardized objects. By populating the environment 
with familiar objects, standardization extends the number of situations 
an actor is able to control. As a result, this finding describes one of the 
ways in which situational control may be established – through dissemi-
nation of standards.

In his work, Bruno Latour conceptualizes metrology as the practice 
of developing and implementing standards in science (Latour, 1986, 
p.  30), a  practice which makes it possible for inscriptions to play the 
role of immutable mobiles. Here, the subject of inquiry is software de-
velopment, but we can see that in this field standards are no less signifi-
cant. They allow for knowledge to travel together with actors and make 
large scale coordination possible, which is also consistent with the role 
Latour gives to standards (Latour, 2005, p. 229, 244). It follows that what is 
outside the network consisting of distributed standardized objects is not 
interacted with because it is difficult to control the conditions in which 
the interaction would take place. From this perspective, it is possible to 
grasp the recursivity of free and open source software – the fact that it 
mobilizes existing free and open source software as means to develop 
new software  – as an issue of standards dissemination. Be it standard 
licenses, standard tools or standard design artifacts, their presence make 
interaction acceptable, or even desirable. From this perspective, the two 



OBSAH 

150Conclusion

branches – free software and open source software – differ in the empha-
sis they put on which standardized components they expect in software 
development projects. While the former tends to emphasize licensing 
and its moral implications, the latter puts more emphasis on the practi-
cal implications of using open source tools. Proprietary software is then 
off the table for both branches because it does not contain either of the 
components considered standard by free and open source software de-
velopers.

Now let me turn to the second question, which is focused on resources 
that are necessary to make connections in this environment. The process 
described above is very valuable because, as we have seen, knowledge is 
closely related to practicing rights traditionally associated with owner-
ship in this context. Users do not own proprietary software; they are only 
licensed to use it. This is a common claim in the FOSS world, which, as 
Coleman (2013, p. 6) shows, leads to the prevailing opinion that source 
code should not be subject to property rights. Indeed, by using FOSS 
licensing, the authors of source code voluntarily abandon most rights as-
sociated with ownership. Formally, this prevents ownership from being 
exercisable (unless, of course, the licensing conditions are violated). 
FOSS licensing disposes of ownership by ascribing the most fundamen-
tal rights associated with it to anyone. But practically, if we consider own-
ership to be defined exactly by those activities the licenses are explicitly 
permissive about (that is, source code access, modification and redistri-
bution) we can see that they are not practiced by just about anyone. The 
most significant prerequisite for doing so is holding specific kinds of 
knowledge. Hence my claim about the close relationship between owner-
ship (at the level of practice) and knowledge. However, this claim has one 
important caveat – it uses ownership in a sense in which it is no longer an 
exclusive right. In this context, ownership is redefined to a form in which 
it can be exercised by multiple parties simultaneously.146

146 The extent of the redefinition becomes visible when we compare this case with 
a classic model of ownership such as, for example, the one that Bruce Carruthers 
and Laura Ariovich use as a starting point for their overview work on the sociology of 
property rights (Carruthers & Ariovich, 2004, p. 24). In the model, ownership is de-
fined by the simultaneous validity of three points: (1) A has the right to use P; (2) A may 
exclude others from using P; (3) A may transfer rights defined by rules 1 and 2 to others 
by consent. The mismatch between the model and the empirical case at hand would 
be worth examining in detail and, as such, represents a venue for following up on this 
research. But within the scope of this work, I must limit myself to pointing out that the 



151Conclusion

OBSAH 

The distribution of source code and provision of free software rights 
introduces ownership only potentially, or we could say (with refer-
ence to Rob Shields 2003) virtually. It is only by exercising the rights to 
study, modify and redistribute the source code that ownership is actu-
ally performed. These knowledge intensive activities (performed through 
pragmatic and epistemic actions enabled by tools) allow for knowledge 
accumulation, which in turn supports further activities. In its course, this 
bootstrapping process renders ownership actual. This claim is further 
supported by observations of business models that do not rely on (formal) 
ownership of information. Instead, these business models are based on 
employing actors knowledgeable of publicly available information and 
through them, providing paid support for their customers. Therefore, 
even though a product (software) is publicly available, it is owned (to the 
extent that profit can be made) only by those holding knowledge of it.

Reintroducing the concept of ownership (although highly modified) 
to FOSS development can help explain the interrelatedness of significant 
FOSS projects with private companies, even though prominent authors in 
this area consider the movement incompatible with capitalism (Coleman, 
2013; Himanen et al., 2001; Söderberg, 2008). Indeed, the FOSS move-
ment is at odds with classic capitalist values like the duty based work 
ethic or the legal form of private property rights. However, this does not 
seem to matter all that much, as long as there is some source of differ-
entiating value that can be utilized to build business models around. The 
barrier of information complexity and the necessary investments to ap-
propriate the information represent such a source.147 Its existence allows 

sources of this problematic relationship seem to lie in an ambiguity of the word “use”, 
in this case stemming from the difference between use by users and a more knowledge 
intensive use by software developers; in the assumed exclusivity in use of property, 
which is problematic for the whole domain where digital data are concerned, as I can 
illustrate with the work of Majid Yar on piracy, particularly the part where he stresses 
the difference between tangibles and intangibles (Yar, 2008, pp. 612–613); and in the 
unforeseen possibility that rights (1) and (2) could be systematically suspended through 
consistent use of a specific type of licensing.
147 I believe that this line of argumentation is consistent with the implications of 
Stehr’s concept of incremental knowledge. According to this author, incremental 
knowledge represents a “marginal unit” of knowledge in the process of its ageing or 
decay (Stehr, 2001, p. 39). Seen from this perspective, such a marginal unit can have 
a strategic value, especially if it is not yet widely spread. Therefore, as Stehr deduces, 
the faster the process of knowledge ageing, the greater the significance of those pro-
ducing knowledge. Simultaneously, the position of knowledge producers is also se-



OBSAH 

152Conclusion

for the establishment of contexts where decoupling of differentiating 
values from dutiful work or private property rights is possible. It is not 
very important whether we view this as the result of an adaptive capacity 
of capitalism or a transformative capacity of the FOSS movement. What 
matters is the existence of a symbiotic (although fragile at times) balance 
between two entities that were initially considered inconsistent. This rep-
resents the underlying logic which allows for a considerable amount of 
resources to be allocated to FOSS projects.

At face value, the claim about the central role of knowledge in this 
environment seems to support the assumption of utopian virtualism, that 
knowledge is currently the most important production force. However, 
as we have seen, knowledge does not stand on its own even in the digital 
realm and so there are too many caveats to the claim. In FOSS projects, 
knowledge transmission is made possible by free access to information 
granted by a specific type of licensing. Furthermore, knowledge is dynam-
ized through involvement in an intricate network of tools and platforms, 
with investment of significant amounts of time, allowing for epistemic 
action to be conducted continuously in order for a newcomer to become 
part of a software development project. The tools and platforms are con-
ditioned, in turn, by hardware such as servers, personal computers and 
their connection to the Internet.148 The amounts of available time are de-
pendent on the life situations of the respective actors. Combined with ap-
propriate motivational impulses (such as intrinsic interest, status, moral 
or ideological positions) only this configuration results in accumulation 
of significant amounts of knowledge. It should become clear now that for 
all its significance, knowledge is not self-sufficient; knowledge does not 
immaterially operate upon knowledge.

Furthermore, in utopian virtualism the implicit concept of immate-
rial action is an assumption enabling the image of free and flexible as-

cured by the fact that if sold (or provided as a service) knowledge still remains within 
the domain of the producer. As Stehr puts it: “the transfer of knowledge does not 
necessarily include the transfer of the cognitive ability to generate such knowledge” 
(Stehr, 2001, pp. 39–40). From this perspective, the barrier to producing knowledge 
from information seems to be a plausible source of differentiating value for FOSS 
projects.
148 The tables or basements filled with digital equipment that were recorded on video 
in the series on Linux kernel developer workspaces by Linux.com are cases in point. 
See, for example: https://www.youtube.com/watch?v=HSgUPqygAww or https://www.
youtube.com/watch?v=NomqUIC_Uzs.

https://www.youtube.com/watch?v=HSgUPqygAww
https://www.youtube.com/watch?v=NomqUIC_Uzs
https://www.youtube.com/watch?v=NomqUIC_Uzs


153Conclusion

OBSAH 

sociation.149 It is based on the image of self-organizing masses, flocking, 
swarming around problems to solve them and push the advance further. 
However, the idea held by utopian virtualism that taking advantage of the 
functionality that digital technologies bring is only a  matter of having 
these technologies available omits significant contingencies. As we can 
see in how FOSS projects, the avant-garde of digital culture, operate, the 
interlocking of various conditions cannot be assumed to be unproblem-
atic. The dropout rate of newcomers demonstrates this very well. As my 
findings indicate, even in the supposedly frictionless digital environ-
ment, the center/periphery structure emerges, signifying the central 
role of a few heavily involved individuals. This is also supported by other 
research uncovering participation inequality (Holtgrewe, 2004; Krishna-
murthy, 2002; Kuk, 2006; McInerney, 2009). This phenomenon may be 
explained by taking into consideration the combination of specific in-
terests an individual has and the heavy knowledge investment one has 
to make in order to be able to contribute to a project. The core maintain-
ers are the bearers of the deepest knowledge about a project, and their 
association with it is anything but loose. Switching to another project 
would deprive them of their status and place them under the pressure of 
learning how to deal with a new codebase.150 Thus, paradoxically enough, 
knowledge can be a  limiting condition with regard to the images of 
utopian virtualism just as it seems to be enabling.

As represented by the claim that “for the first time in history, the 
human mind is a direct productive force, not just a decisive element of 
the production system” (Castells, 2010c, p.  31), the tendency to invoke 
the images of frictionless association seems to be implied by Cas-
tells’s  work.151 But how can the mind be a  direct productive force? All 
the “knowledge workers” who are entrenched with computing technol-
ogy through their working hours always interact with a software inter-

149 This could also be related to Castells’ claim about mind being a direct productive 
force – nothing is more flexible than a mind with unrestricted access to reality.
150 However, it is not uncommon for such switching to take place. This seems to indi-
cate that involvement in FOSS projects, in a sense, constitutes the kind of education 
that Castells envisions to produce “self-programmable labor” (Castells, 2010a, p. 377).
151 This premise seems to represent an assumption also found in Castells’s later works, 
such as the book Communication Power (2009) where this author dedicates a whole 
chapter (Networks of Mind and Power) to a description of a direct relationship between 
the mind (located exclusively in the brain) and culture, not considering any kind of 
mediation between the two.



OBSAH 

154Conclusion

face. And when it gets to users, an interface is no longer a fluid thing 
that can be meddled with by modifying text (source code) as was the case 
while it was developed. In interaction with users, an interface is part of 
a compiled program, having a binary form and operating closer to the 
logic of voltage differences transmitted by hardware, than to the logic 
of (programming) language and text (source code). Therefore, when soft-
ware reaches its users, we can see that the culturally contingent construct 
has materialized (literally) into a solid thing that (together with hardware 
input/output devices) forms the interface for the mind.

It is said that a good interface should be invisible (in the sense that 
it does not get in the way of user’s actions) but that does not mean it is 
not there. As we have seen, interfaces are there to display data (because 
digital information is not directly accessible to the senses, by definition, 
it needs an intermediary to be accessed) and to offer to the user a set of 
possible actions. Anything that is not part of an interface, is impossible 
to perform for a user.152 This dependency on interfaces is not consistent 
with the claim of mind being a direct productive force. Castells ascribes 
epistemic credit only to the human mind,153 but as we can see, there is 
still a production system revolving around a mind, mediating its input 
and output.154

To avoid this criticism, one could argue that Castells’s  statement 
should not be considered with relation to an individual worker, but with 
regard to the minds of all concerned workers. That is to say, one mind is 
operating with something that is a product of another mind, but it is still 
the product of a mind. Therefore, with regard to the type of production 

152 In this regard, Lawrence Lessig famously claims that source code is the law of 
cyberspace (Lessig, 2006, p. 5) while Richard Spinello builds upon this analogy to 
argue that software developers should aspire to a similar moral competence to that of 
lawmakers in a democratic establishment (Spinello, 2001, p. 149).
153 According to Edwin Hutchins, the image of the human mind as the sole origin of 
cognitive accomplishment is the result of a reified analogy between the human mind 
and the computer: “The computer was not made in the image of the person. The com-
puter was made in the image of the formal manipulations of abstract symbols. And the 
last 30 years of cognitive science can be seen as attempts to remake the person in the 
image of the computer” (E. Hutchins, 1995, p. 363).
154 This tendency in Castells’ work can also be seen as an omission of Stehr’s claim that 
actors need to maintain control of the situational circumstances in order to be able 
to translate knowledge into action (Stehr, 2001, p. 44, 2007, p. 143). In other words, it 
seems that Castells presupposes that the introduction of digital technologies automat-
ically creates conditions suitable for utilization of knowledge.



155Conclusion

OBSAH 

(production by mind) the statement could be formally correct. But when 
we consider the argument formulated in this way, that in production one 
mind builds upon what other minds created, it loses its claim to discon-
tinuity. Was production, with its use of tools designed by a narrow group 
of people and utilized by a larger one, not organized in this way before 
the 1970s? It certainly was.

I do not aim to disprove, or argue against Castells’s work as a whole. 
A proper analysis of his comprehensive work is beyond the scope of this 
text. My argument is centered around just one of his claims that I see as 
being symptomatic of utopian virtualism. In the light of my findings, Cas-
tells’s premise about the mind being a direct productive force seems to 
be untenable. This is so because, in the sense elaborated above, he omits 
the mediating role of at least some of the technologies he writes about 
and because he ascribes cognitive accomplishments solely to a univer-
salistic model of a human mind. What my findings, connecting to previ-
ous developments in Actor-Network Theory and the theory of distributed 
cognition, demonstrate is that the human mind (if we can talk about such 
a singularity at all) can achieve very little by itself. How could knowledge 
exist without the elements that together form a (digital) interface? This 
is not to argue that the impulses of the mind have to be embodied in 
a material form. I point to the thesis that material objects (including the 
digital ones) are constitutive of cognitive processes. Therefore, the mind 
is surely a part of the production process, but it is not the sole nor direct 
productive force.



OBSAH 

156References

References

Aigrain, P. (1997). Attention, Media, Value and Economics. First Monday, 2(9).
Anthun, K. S. (2013). Work in Progress: An Ethnographic Study of Power and 

Work in a Norwegian Engineering Unit (Dissertation thesis). Norwegian 
University of Science; Technology, Trondheim.

Ashby, W. R. (1962). Principles of the Self-Organizing System. In H. V. Fo-
erster & G. W. Zopf (Eds.), Principles of Self-Organization (pp. 255–278). 
Oxford: Pergamon Press.

Barad, K. (1998). Getting Real: Technoscientific Practices and the Mate-
rialization of Reality. Differences, A Journal of Feminist Cultural Studies, 
10(2), 87–126.

Barad, K. (2007). Meeting the Universe Halfway: Quantum Physics and the 
Entanglement of Matter and Meaning. Durham: Duke University Press.

Bateson, G. (1972). Steps to an Ecology of Mind: Collected Essays in Anthropology, 
Psychiatry, Evolution, and Epistemology. Chicago: University of Chicago 
Press.

Benkler, Y. (2002). Coase’s Penguin, or, Linux and “The Nature of the Firm”. 
Yale Law Journal, 112(3), 369–446.

Benkler, Y. (2004). Sharing Nicely: On Shareable Goods and the Emergence 
of Sharing As a Modality of Economic Production. Yale Law Journal, 
114(2), 273–358.

Benkler, Y. (2006). The Wealth of Networks: How Social Production Transforms 
Markets and Freedom. New Haven: Yale University Press.

Bergquist, M., & Ljungberg, J. (2001). The Power of Gifts: Organizing 
Social Relationships in Open Source Communities. Information Systems 
Journal, 11(4), 305–320.

Blumer, H. (1986). Symbolic Interactionism: Perspective and Method. Englewood 
Cliffs: Prentice Hall, Inc.

Bourdieu, P. (1998). Practical Reason: On the Theory of Action. Stanford, CA: 
Stanford University Press.

Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineering. 
Boston: Addison Wesley.

Cantoni, L., & Tardini, S. (2006). Internet. New York: Routledge.
Carruthers, B. G., & Ariovich, L. (2004). The Sociology of Property Rights. 

Annual Review of Sociology, 30(1), 23–46.



157References

OBSAH 

Castells, M. (2000a). Materials for an Exploratory Theory of the Network 
SocietyI. The British Journal of Sociology, 51(1), 5–24.

Castells, M. (2000b). Toward a Sociology of the Network Society. Contem-
porary Sociology, 29(1), 693–699.

Castells, M. (2009). Communication Power. Oxford: Oxford University Press.
Castells, M. (2010a). End of Millennium. The Information Age: Economy, Society, 

and Culture (Vol. 3). Chichester: Wiley–Blackwell.
Castells, M. (2010b). The Power of Identity. The Information Age: Economy, 

Society, and Culture (Vol. 2). Chichester: Wiley–Blackwell.
Castells, M. (2010c). The Rise of the Network Society. The Information Age: 

Economy, Society and Culture (Vol. 1). Chichester: Wiley–Blackwell.
Castells, M., & Portes, A. (1989). World Underneath: The Origins, Dynam-

ics, and Effects of the Informal Economy. In A. Portes, M. Castells, 
& L. A. Benton (Eds.), The Informal Economy: Studies in Advanced and Less 
Developed Countries. Baltimore: The Johns Hopkins University Press.

Clark, A. (1998). Where Brain, Body, and World Collide. Daedalus, 127(2), 
257–280.

Clark, A. (2006). Material Symbols. Philosophical Psychology, 19(3), 291–307.
Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis, 58(1), 7–19.
Coase, R. H. (1937). The Nature of the Firm. Economica, 4(16), 386–405.
Coase, R. H. (1960). The Problem of Social Cost. Journal of Law and Econom-

ics, 3(1).
Coleman, G. (2009). Code is Speech: Legal Tinkering, Expertise, and 

Protest among Free and Open Source Software Developers. Cultural 
Anthropology, 24(3), 420–454.

Coleman, G. (2013). Coding Freedom: The Ethics and Aesthetics of Hacking. 
Princeton: Princeton University Press.

Cook, J., Laidlaw, J., & Mair, J. (2009). What If There Is No Elephant? 
Towards a Conception of an Un-Sited Field. In M. A. Falzon (Ed.), 
Multi-Sited Ethnography: Theory, Praxis and Locality in Contemporary Re-
search (pp. 47–72). Farnham: Ashgate Publishing, Ltd.

Corbet, J., Kroah-Hartman, G., & McPherson, A. (2015). Linux Kernel De-
velopment. Annual report, The Linux Foundation.

Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., & Howison, J. (2007). Selforgani-
zation of Teams for Free/Libre Open Source Software Development. 
Information and Software Technology, 49(6), 564–575.

Dafermos, G., & Söderberg, J. (2009). The Hacker Movement As a Continu-
ation of Labour Struggle. Capital & Class, 33(1), 53–73.



OBSAH 

158References

Dahlander, L., & Magnusson, M. (2008). How do Firms Make Use of Open 
Source Communities? Long Range Planning, 41(6), 629–649.

Darking, M., & Whitley, E. A. (2007). Towards an Understanding of FLOSS: 
Infrastructures, Materiality and the Digital Business Ecosystem. Science 
Studies, 20(2), 13–33.

Davis, M. (2013). Doing Research “On and Through” New Media Narrative. 
In M. Andrews, M. Tamboukou, & C. Squire (Eds.), Doing Narrative 
Research (pp. 159–175). London: Sage.

Demazière, D., Horn, F., & Zune, M. (2007). The Functioning of a Free 
Software Community. Science Studies, 20(2), 34–54.

DiMaggio, P. (1997). Culture and Cognition. Annual Review of Sociology, 
23(1), 263–287.

Dittrich, Y. (2002). Reaching Out for Commitments: Systems Development 
As Networking. In Y. Dittrich, C. Floyd, & R. Klischewski (Eds.), Social 
Thinking – Software Practice (pp. 243–262). Cambridge, MA: MIT Press.

Ducheneaut, N. (2005). Socialization in an Open Source Software Com-
munity: A Socio-Technical Analysis. Computer Supported Cooperative 
Work (CSCW), 14(4), 323–368.

Ehn, P. (1988). Work-Oriented Design of Computer Artifacts (Dissertation 
thesis). Umeå University, Stockholm.

Falzon, M. A. (2012). Multi-Sited Ethnography: Theory, Praxis and Locality in 
Contemporary Research. Farnham: Ashgate Publishing, Ltd.

Fekete, L. (2006). The Ethics of Economic Interactions in the Network 
Economy. Information, Community & Society, 9(6), 737–760.

Floyd, C. (1992). Human Questions in Computer Science. In C. Floyd, 
H. Züllighoven, R. Budde, & R. Keil-Slawik (Eds.), Software Development 
and Reality Construction (pp. 15–27). Berlin: Springer.

Freeman, S. (2007). The Material and Social Dynamics of Motivation. 
Science Studies, 20(2), 55–77.

Garfinkel, H. (1967). Studies in Ethnomethodology. Englewood Cliffs: Prentice-
Hall.

Garzarelli, G., & Fontanella, R. (2011). Open Source Software Production, 
Spontaneous Input, and Organizational Learning. American Journal of 
Economics and Sociology, 70(4), 928–950.

Ghosh, R. A., Glott, R., Krieger, B., & Robles, G. (2002). Free/Libre and Open 
Source Software: Survey and Study. Maastricht: International Institute 
of Infonomics. Retrieved from http://www.flossproject.org/report/
FLOSS_Final4.pdf

http://www.flossproject.org/report/FLOSS_Final4.pdf
http://www.flossproject.org/report/FLOSS_Final4.pdf


159References

OBSAH 

Giere, R. N. (2002). Discussion Note: Distributed Cognition in Epistemic 
Cultures. Philosophy of Science, 69(4), 637–644.

Giere, R. N., & Moffatt, B. (2003). Distributed Cognition: Where the Cogni-
tive and the Social Merge. Social Studies of Science, 33(2), 301–310.

Glanville, R. (1982). Inside Every White Box There Are Two Black Boxes 
Trying to Get Out. Behavioral Science, 27(1), 1–11.

Glanville, R. (2007). A (Cybernetic) Musing: Ashby and the Black Box. 
Cybernetics & Human Knowing, 14(2–3), 189–196.

Goldhaber, M. (2006). The Value of Openness in an Attention Economy. 
First Monday, 11(6).

Goldhaber, M. H. (1997). The Attention Economy and the Net. First Monday, 2(4).
Hakken, D. (1999). Cyborgs@Cyberspace?: An Ethnographer Looks to the Future. 

New York: Routledge.
Hakken, D. (2003). The Knowledge Landscapes of Cyberspace. New York: Rout-

ledge.
Hammersley, M. (1990). Dilemma of Qualitative Method. New York: Routledge.
Haraway, D. (2006). A  Cyborg Manifesto: Science, Technology, and 

Socialist-Feminism in the Late 20th Century. In J. Weiss, J. Nolan, 
J. Hunsinger, & P. Trifonas (Eds.), The International Handbook of Virtual 
Learning Environments (pp. 117–158). New York: Springer.

Hemetsberger, A., & Reinhardt, C. (2006). Learning and Knowledge-Build-
ing in Open-Source Communities: A Social-Experiential Approach. 
Management Learning, 37(2), 187–214.

Hemetsberger, A., & Reinhardt, C. (2009). Collective Development in Open 
Source Communities: An Activity Theoretical Perspective on Successful 
Online Collaboration. Organization Studies, 30(9), 987–1008.

Heylighen, F. (1999). Collective Intelligence and Its Implementation on the 
Web: Algorithms to Develop a Collective Mental Map. Computational & 
Mathematical Organization Theory, 5(3), 253–280.

Heylighen, F. (2002). The Global Brain As a New Utopia. In R. Maresch 
& F. Rötzer (Eds.), Zukunftsfiguren. Frankfurt: Suhrkamp.

Heylighen, F., & Bollen, J. (1996). The World-Wide Web As a Super-Brain: 
From Metaphor to Model. In R. Trappl (Ed.), Cybernetics and Systems. 
Vienna: Austrian Society for Cybernetics.

Heylighen, F., Heath, M., & Van, F. (2004). The Emergence of Distributed 
Cognition: A Conceptual Framework. In Proceedings of Collective Inten-
tionality IV. Siena.

Himanen, P., Castells, M., & Torvalds, L. (2001). The Hacker Ethic and the 
Spirit of the Information Age. New York: Random House.



OBSAH 

160References

Hine, C. (2000). Virtual Ethnography. London: Sage.
Holtgrewe, U. (2004). Articulating the Speed (S) of the Internet: the Case 

of Open Source/Free Software. Time & Society, 13(1), 129–146.
Hutchins, E. (1991). Organizing Work by Adaptation. Organization Science, 

2(1), 14–39.
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT press.
Hutchins, E. (2011). Enculturating the Supersized Mind. Philosophical Studies, 

152(3), 437–446.
Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct Manipulation 

Interfaces. Human–Computer Interaction, 1(4), 311–338.
Karatzogianni, A., & Michaelides, G. (2009). Cyberconflict at the Edge of 

Chaos: Cryptohierarchies and Self-Organisation in the Open-Source 
Movement. Capital & Class, 33(1), 143–157.

Keil-Slawik, R. (1992). Artifacts in Software Design. In C. Floyd, H. Zül-
lighoven, R. Budde, & R. Keil-Slawik (Eds.), Software Development and 
Reality Construction (pp. 168–188). Berlin: Springer.

Kelty, C. (2004). Culture’s Open Sources: Software, Copyright, and Cultural 
Critique. Anthropological Quarterly, 77(3), 499–506.

Kelty, C. (2008). Two Bits: The Cultural Significance of Free Software. Durham: 
Duke University Press.

Kim, M. (2007). The Creative Commons and Copyright Protection in the 
Digital Era: Uses of Creative Commons Licenses. Journal of Computer-
Mediated Communication, 13(1), 187–209.

Klischewski, R. (2002). Reaching Out for Commitments: Systems Develop-
ment As Networking. In Y. Dittrich, C. Floyd, & R. Klischewski (Eds.), 
Social Thinking – Software Practice (pp. 309–329). Cambridge, MA: MIT 
Press.

Knorr Cetina, K. (1999). Epistemic Cultures: How the Sciences Make Knowledge. 
Cambridge, MA: Harvard University Press.

Krishnamurthy, S. (2002). Cave or Community?: An Empirical Examination 
of 100 Mature Open Source Projects. First Monday, 7(6).

Kuk, G. (2006). Strategic Interaction and Knowledge Sharing in the KDE 
Developer Mailing List. Management Science, 52(7), 1031–1042.

Lakhani, K., Wolf, B., Bates, J., & DiBona, C. (2002). The Boston Consulting 
Group Hacker Survey. Retrieved from ftp://mirror.linux.org.au/pub/
linux.conf.au/2003/papers/Hemos/Hemos.pdf

Landström, C., Whatmore, S. J., & Lane, S. N. (2011). Virtual Engineering. 
Science Studies, 24(2), 3–22.

ftp://mirror.linux.org.au/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf
ftp://mirror.linux.org.au/pub/linux.conf.au/2003/papers/Hemos/Hemos.pdf


161References

OBSAH 

Latour, B. (1986). Visualization and Cognition. Knowledge and Society, 6(1), 
1–40.

Latour, B. (1991). Technology is Society Made Durable. In J. Law (Ed.), 
A  Sociology of Monsters: Essays on Power, Technology and Domination  
(pp. 103–132). London: Routledge.

Latour, B. (1994). On Technical Mediation. Common Knowledge, 3(2), 29–64.
Latour, B. (1996a). On Interobjectivity. Mind, Culture, and Activity, 3(4), 

228–245.
Latour, B. (1996b). Social Theory and the Study of Computerized Work 

Sites. In W. J. Orlinokowski & W. Geoff (Eds.), Information Technology and 
Changes in Organizational Work (pp. 295–307). London: Chapman & Hall.

Latour, B. (2000). When Things Strike Back: A Possible Contribution of 
“Science Studies” to the Social Sciences. The British Journal of Sociology, 
51(1), 107–123.

Latour, B. (2003). The Promises of Constructivism, 27–46.
Latour, B. (2005). Reassembling the Social: An Introduction to Actor-Network-

Theory. New York: Oxford University Press.
Latour, B. (2007a). A Textbook Case Revisited. Knowledge As Mode of Ex-

istence. In E. J. Hackett, O. Amsterdamska, M. E. Lynch, & J. Wajcman 
(Eds.), The Handbook of Science and Technology Studies – Third Edition 
(pp. 83–112). Cambridge, MA: MIT Press.

Latour, B. (2007b). Can We Get Our Materialism Back, Please? Isis, 98(1), 
138–142.

Latour, B. (2009). Spheres and Networks: Two Ways to Reinterpret Globali-
zation. Harvard Design Magazine, 30(Spring/Summer), 138–144.

Latour, B. (2010, February). Networks, Societies, Spheres: Reflections of 
an Actor-Network Theorist. Lecture Notes.

Latour, B. (2011). “What’s the Story?” Organizing As a Mode of Existence. In 
J.-H. Passoth, B. Peuker, & M. Schillmeier (Eds.), Agency Without Actors? 
New Approaches to Collective Action (pp. 164–167). London: Routledge.

Latour, B. (2012). We Have Never Been Modern. Harvard University Press.
Latour, B., & Woolgar, S. (2013). Laboratory Life: The Construction of Scientific 

Facts. Princeton: Princeton University Press.
Lave, J. (1988). Cognition in Practice: Mind, Mathematics and Culture in Everyday 

Life. Cambridge: Cambridge University Press.
Law, J., & Lien, M. E. (2013). Slippery: Field Notes in Empirical Ontology. 

Social Studies of Science, 43(3), 363–378.
Lawson, M. P. (1999). The Holy Spirit As Conscience Collective. Sociology 

of Religion, 60(4), 341–361.



OBSAH 

162References

Lee, G. K., & Cole, R. E. (2003). From a Firm-Based to a Community-Based 
Model of Knowledge Creation: The Case of the Linux Kernel Develop-
ment. Organization Science, 14(6), 633–649.

Lerner, J., & Tirole, J. (2002). Some Simple Economics of Open Source. 
The Journal of Industrial Economics, 50(2), 197–234.

Lessig, L. (2006). Code: Version 2.0. New York: Basic Books.
Lévy, P. (2005). Collective Intelligence, a Civilisation: Towards a Method 

of Positive Interpretation. International Journal of Politics, Culture, and 
Society, 18(3-4), 189–198.

Lévy, P., & Bonomo, R. (1999). Collective Intelligence: Mankind’s Emerging 
World in Cyberspace. Perseus Publishing.

Leydesdorff, L. (2011). “Meaning” As a Sociological Concept: A Review 
of the Modeling, Mapping and Simulation of the Communication of 
Knowledge and Meaning. Social Science Information, 50(3-4), 391–413.

Ljungberg, J. (2000). Open Source Movements As a Model for Organising. 
European Journal of Information Systems, 9(4), 208–216.

Long, E. (1993). Textual Interpretation As Collective Action. In J. Boyarin 
(Ed.), The Ethnography of Reading (pp. 180–211). Berkeley: University of 
California Press.

Luhmann, N. (1995). Social Systems. Stanford, CA: Stanford University Press.
Luhmann, N. (2014). Die Gesellschaft der Gesellschaft. Frankfurt: Suhrkamp.
Luyt, B. (2011). The Nature of Historical Representation on Wikipedia: 

Dominant or Alternative Historiography? Journal of the American Society 
for Information Science and Technology, 62(6), 1058–1065.

Macek, J. (2009). Poznámky k teorii virtuálních komunit. Biograf, 50, 3–31.
Macek, J. (2013). Poznámky ke studiím nových médií. Brno: Masarykova uni-

verzita.
Magnani, L., & Bardone, E. (2008). Distributed Morality: Externalizing 

Ethical Knowledge in Technological Artifacts. Foundations of Science, 
13(1), 99–108.

Magnus, P. D. (2007). Distributed Cognition and the Task of Science. Social 
Studies of Science, 37(2), 297–310.

Malone, T., Laubacher, R., & Dellarocas, C. (2010). The Collective Intel-
ligence Genome. MIT Sloan Management Review, 51(3), 21–31.

Marcus, G. E. (1995). Ethnography in/of the World System: The Emergence 
of Multi-Sited Ethnography. Annual Review of Anthropology, 24(1), 95–117.

Markham, A. N. (2004). Internet Communication As a Tool for Qualitative 
Research, 95–124.



163References

OBSAH 

Maturana, H. R. (1980). Autopoiesis and Cognition: The Realization of the Living. 
Dodrecht: D. Reidl Publishing Company.

Maturana, H. R., & Varela, F. J. (1987). The Tree of Knowledge: The Biological 
Roots of Human Understanding. Boston, MA: Shambhala Publications, Inc.

McCarthy, D. (1996). Knowledge As Culture: The New Sociology of Knowledge. 
London: Routledge.

McInerney, P.-B. (2009). Technology Movements and the Politics of 
Free/Open Source Software. Science, Technology & Human Values, 34(2),  
206–233.

Mead, G. H. (1972). Mind, Self, and Society: From the Standpoint of a Social 
Behaviorist. Chicago: University of Chicago Press.

Mol, A., & Law, J. (1994). Regions, Networks and Fluids: Anaemia and Social 
Topology. Social Studies of Science, 24(4), 641–671.

Nardi, B. A., & Engeström, Y. (1999). A Web on the Wind: The Structure of 
Invisible Work. Computer Supported Cooperative Work (CSCW), 8(1), 1–8.

Naur, P. (1985). Programming As Theory Building. Microprocessing and Mi-
croprogramming, 15(5), 253–261.

Nørbjerg, J., & Kraft, P. (2002). Software Practice is Social Practice. In 
Y. Dittrich, C. Floyd, & R. Klischewski (Eds.), Social Thinking – Software 
Practice (pp. 205–222). Cambridge, MA: MIT Press.

Norris, P. (2001). Digital Divide: Civic Engagement, Information Poverty, and the 
Internet Worldwide. Cambridge: Cambridge University Press.

O’Mahony, S., & Ferraro, F. (2007). The Emergence of Governance in 
an Open Source Community. Academy of Management Journal, 50(5), 
1079–1106.

Ondrejka, C. (2004). Escaping the Gilded Cage: User Created Content and 
Building the Metaverse. New York Law School Law Journal, 49(1), 81–101.

Osterloh, M., & Rota, S. (2004). Trust and Community in Open Source 
Software Production. Analyse & Kritik, 26(1), 279–301.

Parikka, J. (2014, September). Digital Culture As the Desire of the Geophysical: 
A Geology of Media. Conference Keynote.

Qureshi, I., & Fang, Y. (2010). Socialization in Open Source Software Pro-
jects: A Growth Mixture Modeling Approach. Organizational Research 
Methods, 14(1), 208–238.

Raeithel, A. (1992). Activity Theory As a Foundation for Design. In C. Floyd, 
H. Züllighoven, R. Budde, & R. Keil-Slawik (Eds.), Software Development 
and Reality Construction (pp. 391–415). Berlin: Springer.

Ratto, M. (2007). A Practice-Based Model of Access for Science. Science 
Studies, 20(1), 73–105.



OBSAH 

164References

Raymond, E. (1999). The Cathedral and the Bazaar. Knowledge, Technology 
& Policy, 12(3), 23–49.

Raymond, E. (2003). The Art of Unix Programming. Boston, MA: Addison-
Wesley Professional.

Reay, M. (2010). Knowledge Distribution, Embodiment, and Insulation. 
Sociological Theory, 28(1), 91–107.

Reed, I. A. (2011). Interpretation and Social Knowledge: On the Use of 
Theory in the Human Sciences.

Reimer, K. (2005). Fiat Lux: Religion As Distributed Cognition. Journal of 
Psychology & Christianity, 24(2), 130–139.

Roberts, J. A., Hann, I.-H., & Slaughter, S. A. (2006). Understanding the 
Motivations, Participation, and Performance of Open Source Software 
Developers: A Longitudinal Study of the Apache Projects. Management 
Science, 52(7), 984–999.

Rogers, Y., & Ellis, J. (1994). Distributed Cognition: An Alternative Frame-
work for Analysing and Explaining Collaborative Working. Journal of 
Information Technology, 9(1), 119–128.

Rönkkö, K. (2002). “Yes-What Does that Mean?” Understanding Distributed 
Requirements Handling. In Y. Dittrich, C. Floyd, & R. Klischewski 
(Eds.), Social Thinking – Software Practice (pp. 223–241). Cambridge, MA: 
MIT Press.

Rosenzweig, R. (2006). Can History Be Open Source? Wikipedia and the 
Future of the Past. The Journal of American History, 93(1), 117–146.

Schütz, A. (1953). Common-Sense and Scientific Interpretation of Human 
Action. Philosophy and Phenomenological Research, 14(1), 1–38.

Shah, S. K. (2006). Motivation, Governance, and the Viability of Hybrid 
Forms in Open Source Software Development. Management Science, 
52(7), 1000–1014.

Shields, R. (2003). The Virtual. London: Routledge.
Simon, H. A. (1971). Designing Organizations for an Information-Rich 

World. In M. Greenberger (Ed.), Computers, Communications, and the 
Public Interest (pp. 37–72). Baltimore: Johns Hopkins Press.

Söderberg, J. (2008). Hacking Capitalism. New York: Routledge.
Spinello, R. A. (2001). Code and Moral Values in Cyberspace. Ethics and 

Information Technology, 3(2), 137–150.
Stack Overflow. (2015). 2015 Developer Survey. Retrieved from http://stacko-

verflow.com/research/developer-survey-2015
Star, S. L. (1999). The Ethnography of Infrastructure. American Behavioral 

Scientist, 43(3), 377–391.

http://stackoverflow.com/research/developer-survey-2015
http://stackoverflow.com/research/developer-survey-2015


165References

OBSAH 

Star, S. L. (2002). Infrastructure and Ethnographic Practice: Working on 
the Fringes. Scandinavian Journal of Information Systems, 14(2), 6.

Stehr, N. (1994). Knowledge Societies. London: Sage.
Stehr, N. (2001). The Fragility of Modern Societies: Knowledge and Risk in the 

Information Age. London: Sage.
Stehr, N. (2007). Societal Transformations, Globalisation and the Knowl-

edge Society. International Journal of Knowledge and Learning, 3(2-3), 
139–153.

Stehr, N., & Ufer, U. (2009). On the Global Distribution and Dissemination 
of Knowledge. International Social Science Journal, 60(195), 7–24.

Stewart, D. (2005). Social Status in an Open-Source Community. American 
Sociological Review, 70(5), 823–842.

Stewart, K., & Gosain, S. (2006). The Impact of Ideology on Effectiveness 
in Open Source Software Development Teams. Mis Quarterly, 30(2), 
291–314.

Strathern, M. (2002). Abstraction and Decontextualization: An Anthro-
pological Comment. In S. Woolgar (Ed.), Virtual Society (pp. 302–314). 
Oxford: Oxford University Press.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine 
Communication. Cambridge: Cambridge University Press.

Suchman, L. (2007). Human-Machine Reconfigurations: Plans and Situated 
Actions. Cambridge: Cambridge University Press.

Takhteyev, Y., & Hilts, A. (2010). Investigating the Geography of Open 
Source Software Through GitHub.

Thurk, J., & Fine, G. A. (2003). The Problem of Tools: Technology and the 
Sharing of Knowledge. Acta Sociologica, 46(2), 107–117.

Tovey, M. (2008). Collective Intelligence: Creating a Prosperous World at Peace. 
Oakton: EIN Press.

Uspenski, I. (2013). Mass Intelligence and the Commoditized Reader. In 
P. Zahrádka & R. Sedláková (Eds.), New Perspectives on Consumer Culture 
Theory and Research. Newcastle upon Tyne: Cambridge Scholars Pub-
lishing.

Vinck, D., & Blanco, E. (2003). Everyday Engineering: An Ethnography of Design 
and Innovation. Cambridge, MA: MIT Press.

Von Foerster, H. (2003a). For Niklas Iuhmann: How Recursive is Com-
munication? In H. von Foerster (Ed.), Understanding Understanding  
(pp. 305–323). New York: Springer.



OBSAH 

166References

Von Foerster, H. (2003b). On Self-Organizing Systems and Their Environ-
ments. In H. von Foerster (Ed.), Understanding Understanding (pp. 1–19). 
New York: Springer.

Von Krogh, G., & Von Hippel, E. (2006). The Promise of Research on Open 
Source Software. Management Science, 52(7), 975–983.

Von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, Joining, 
and Specialization in Open Source Software Innovation: A Case Study. 
Research Policy, 32(7), 1217–1241.

Wagner, R. P. (2003). Information Wants to Be Free: Intellectual Property 
and the Mythologies of Control. Columbia Law Review, 103(1), 995–1034.

Wan, P. Y.-z. (2011). Reframing the Social: Emergentist Systemism and Social 
Theory. Farnham: Ashgate Publishing, Ltd.

Weber, M. (2001). The Protestant Ethic and the Spirit of Capitalism. London: 
Routledge.

Wechsler, D. (1971). Concept of Collective Intelligence. American Psycholo-
gist, 26(10), 904.

West, J., & O’Mahony, S. (2008). The Role of Participation Architecture in 
Growing Sponsored Open Source Communities. Industry and Innova-
tion, 15(2), 145–168.

Westrup, C. (2002). On Retrieving Skilled Practices: The Contribution 
of Ethnography to Software Development. In Y. Dittrich, C. Floyd, & 
R. Klischewski (Eds.), Social Thinking – Software Practice (pp. 95–110). 
Cambridge, MA: MIT Press.

Wikipedia. (2015). Wikipedia — Wikipedia, the Free Encyclopedia. Retrieved 
from http://en.wikipedia.org/w/index.php?title=Wikipedia&ol
did=642784283

Wise, N. M. (2011). Collective Intelligence and Its Corollaries. History and 
Technology, 27(2), 197–203.

Woolgar, S. (2002). Five Rules of Virtuality. In S. Woolgar (Ed.), Virtual 
Society (pp. 1–22). Oxford: Oxford University Press.

Wright, P. C., Fields, R. E., & Harrison, M. D. (2000). Analyzing Human-
Computer Interaction As Distributed Cognition: The Resources Model. 
Human-Computer Interaction, 15(1), 1–41.

Yar, M. (2008). The Rhetorics and Myths of Anti-Piracy Campaigns: Crimi-
nalization, Moral Pedagogy and Capitalist Property Relations in the 
Classroom. New Media & Society, 10(4), 605–623.

Zerubavel, E., & Smith, E. R. (2010). Transcending Cognitive Individualism. 
Social Psychology Quarterly, 73(4), 321–325.

http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=642784283
http://en.wikipedia.org/w/index.php?title=Wikipedia&oldid=642784283


167Index

OBSAH 

Index

Subjects
Actor-Network Theory 

– 14, 52, 155
Autonomous learning – 29–30
Black-boxing – 15, 56–57, 

59, 83, 99, 123, 147
Blogging – 75–78
Bug report – 81–82, 85–88, 

114, 120, 123–124, 147
Capitalism – 24–25, 151–152
Collective intelligence – 34, 36
Community – 12, 18, 23, 26, 

28, 63, 77–78, 132–133, 
137–139, 142–143, 147

Composition – 14–15, 53, 56–57, 
59, 99, 106, 111, 123–124, 126

Cyberspace – 9, 12, 14, 16, 32–35, 
37–38, 51, 58, 60, 154, 

Debugging – 15, 71, 81–83, 
114–115, 120, 124, 147

Decontextualization 
– 14–15, 45, 148

Delegation – 15, 56–59, 99, 
109, 111, 113–115, 117, 120

Design artifacts – 15, 39, 42–43, 
45–47, 49, 53, 58–59, 148–149

Development environment – 44, 
71, 99–100, 102, 104, 106

Digital text – 11, 32, 58, 
60, 74, 82, 95–96, 109, 
115, 117, 120, 122, 148

Distributed Cognition – 
14, 49–50, 52, 155

Epistemic action – 50, 
57, 148, 151–152

Forking – 65, 139
Freedom of speech – 25
GNU is not UNIX (GNU) – 

17–19, 66–67, 71, 79–80, 
82, 132, 142, 146

Hacker ethic – 22–23, 25–26, 28
Hacking – 20, 25, 63, 133
Infrastructure – 7–12, 15, 

24, 32, 35, 42, 44, 67, 70, 
79–81, 88, 98, 120–121, 
135–136, 138, 146, 148

Inscriptions – 120, 
122–123, 147, 149

Internet relay chat (IRC) – 
67–71, 76, 82, 87, 102–103, 
105–106, 108, 112, 114–115, 
120, 125–126, 135

Licensing – 15–16, 18, 26, 44, 
63–67, 78, 80, 142, 145, 150–152

Markup language – 71, 
109–111, 114, 125

MediaWiki – 71–72, 74, 
108–109, 146

Mediation – 14–15, 38, 
56–57, 59, 99, 128, 153

Newcomers – 29, 55, 59, 70, 
81, 107–108, 129, 153

Ownership – 16, 18, 25, 38, 
132–133, 138, 150–151

Participation inequal-
ity – 31, 119, 153



OBSAH 

168Index

Peer production – 33, 38
Peer review – 27, 30, 146–147
Programming language – 39, 

51, 58, 83, 104–105, 110–112, 
115, 117, 122, 127, 146, 148, 154

Protestant ethic – 21, 24
Prototyping – 74, 87, 90, 

120, 123, 146–147
Recursive publics – 23, 104
Self-organization – 5, 30, 50, 54
Source code management – 71, 

88–90, 95, 98, 115, 117, 120, 136
Standards/Standardization – 45, 

67, 105–106, 108, 111, 148–149

Translation – 14–15, 56–57, 59, 
99, 109–111, 114–115, 136, 146

UNIX philosophy – 45, 95, 117
Utopia (utopistic, utopian) – 

14, 16, 24, 32, 34–35, 37–38, 
79, 146, 152–153, 155

Version control – 15, 54, 88, 
92–94, 104, 108, 125, 146

Volunteers/volunteering – 22, 
26–27, 29–30, 64, 128, 133, 
135, 137, 139, 143–144

Wideware – 51, 53, 57, 59, 148–149
Wikipedia – 20, 28, 

32–33, 71–73, 147
Work ethic – 21, 23–24, 28, 151

Authors

Benkler, Yochai – 32–34, 
38, 118, 145–146

Brooks, Fred – 19, 28, 140–141
Castells, Manuel – 21, 26–27, 

30, 36–37, 54, 153–155
Coleman, Gabriella – 25, 150–151
Ehn, Pelle – 41–42
Hakken, David – 12, 

35–38, 45, 52–53
Himanen, Pekka – 20–25, 28, 151
Hutchins, Edwin – 49, 

51–52, 57, 154
Kelty, Christopher – 17, 19–20, 

23–24, 32–33, 104

Latour, Bruno – 10, 29, 41, 
49, 52–58, 120, 131, 149

Lessig, Lawrence – 154
Mead, Herbert – 44
Naur, Peter – 40–41, 62, 126
Raymond, Eric – 19, 28, 35, 95
Schütz, Alfred – 14, 45–46, 59, 149
Shields, Rob – 37, 151
Stehr, Nico – 43–44, 149, 

151–152, 154
Söderberg, Johann – 18–19, 

21–22, 25–26, 151
Torvalds, Linus – 8, 18, 

21, 80, 89–90, 104



169Summary

OBSAH 

Summary

The roots of free and open source software (FOSS) reach to practices 
established around the UNIX operating system in the 1970s. During 
the few decades of its existence the movement inspired a  number 
of similar initiatives in other areas of production (e.g.  Creative 
Commons, Wikipedia or Open Hardware) and its approach to soft-
ware development, once considered marginal, has become main-
stream.

The FOSS movement can be characterized as revolving around 
the central value associating source code with freedoms related to 
speech rather than property. Combined with work ethics opposed to 
that of traditional Protestantism, the movement is seemingly at odds 
with the current modes of capitalist production. FOSS exemplifies 
a form of peer production that is based on reduction of transaction 
costs achieved by informal mode of organization and utilization of 
the Internet infrastructure. There are enthusiastic anticipations or 
even utopian visions associated with this type of phenomena. The an-
ticipations are based on an unconfirmed assumption that knowledge 
alone determines the results of organized forms of production and 
are therefore strongly criticized by some authors. Informed by this 
discussion, the work aims to explore the knowledge related processes 
in FOSS projects to describe the role knowledge plays in this particu-
lar form of peer production.

Methodologically, the work takes into account the specifics 
of cyberspace as a  research field and is informed by George Mar-
cus’s  multi-sited ethnography (with its later developments such as 
multi-sited or un-sited ethnography). Data were gathered during 
fieldwork (including participant observation and document analysis) 
in a FOSS project – I assumed the role of software documentation 
writer.

My theoretical approach to FOSS is based on conceptualization 
of programming, an activity central to software development, as 
a knowledge intensive practice. I proceed to differentiate knowledge 
and information which allows me to formulate the problem of de-
contextualization: Given that only information is exchanged, how is 
knowledge transmitted? One of the possible answers that I explore 



OBSAH 

170Summary

further is that tools used in software development serve not only for instru-
mental but also for epistemic purposes. I further assume that the config-
uration of participants and artefacts that shape cognitive processes take 
the form of networks. To analyze them I use the infra-language provided 
by Actor-Network Theory, particularly the concept of mediation speci-
fied with its four meanings of composition, translation, delegation and  
black-boxing.

In the analytical sections, I  use thick description to elaborate the 
components forming the project network, such as: licenses, software 
distributions, package management systems, command line interface, 
programming or mark-up languages, text editors, developers in various 
roles, IRC chat channels, wiki pages, a user manual, blogs and their ag-
gregators, a Bugzilla database, Git and its repositories, non-profit organi-
zations or private companies.

Using my observation, I describe programming as a practice that as-
sembles and delegates (through compiled programs) action in a durable 
form to multiple places (user’s computers). In this process, software tools 
serve to translate unpredictable flows of work into standardized units, 
delegate them to public places and make them connectable (easily in-
cludable into other compositions). This, in turn, greatly reduces the 
transaction costs of peer production.

However, a significant amount of knowledge is assumed for meaning-
ful participation. And turning large amounts information from several 
sources into knowledge is very costly even though the information is 
freely available. Thus, although the licensing typical for FOSS projects 
intentionally and systematically suspends the rights (to access, modify 
and redistribute) traditionally associated with ownership by ascribing 
them to anyone, the rights are actually practiced only by a narrow group 
of participants who hold specific types of knowledge. As a result, there 
seems to be a close relationship between ownership (on the level of prac-
tice) and knowledge.

This point seems to validate the assumption of the enthusiastic antic-
ipations related to the potential of cyberspace and digital technologies 
in general that knowledge in itself became the dominant factor of pro-
duction. I, however, attempt to show that knowledge is still embedded 
in broader systems of production which are of material nature and that 
knowledge requirements these systems place on participants limit their 
supposedly frictionless interaction.



The Weight of the Intangible
Knowledge Networks in Free and Open Source Software Development

Tomáš Karger

Edition SocioPolis, Vol. 1 
Edition managed by:  Doc. PhDr. Tomáš Lebeda, Ph.D.
 
Executive Editor: Lenka Pořízková
Editor-In-Chief: Agnes Hausknotzová
Editing: Jeffrey Parrott
Proofreading: Jana Kynclová
Typesetting: Veronika Hanáková
Typesetting design: Lenka Pořízková
Cover: Lenka Pořízková

Published by Palacký University Olomouc, Faculty of Arts
Křížkovského 10
771 47 Olomouc

Faculty of Arts Publishing House, UP
www.vff.upol.cz
vff@upol.cz
 
1st edition
Olomouc 2016

ISBN 978-80-87895-67-2 (iPDF)  
ISBN 978-80-87895-68-9 (print)




	list-of-abbreviations
	preface
	introduction
	from-unix-to-technological-utopia
	free-and-open-source-software
	utopian-virtualism
	software-and-knowledge
	tools-and-design-artifacts-in-software-d
	the-role-of-knowledge-in-software-develo
	network-shaped-knowledge-distribution
	cognitive-networks
	actor-networks
	practices-of-a-foss-project
	code-allocation
	knowledge-channeling
	debugging
	revision-tracking
	mediation-and-resources-inside-a-foss-pr
	meanings-of-mediation
	composition
	translation-and-delegation
	black-boxing
	resources-driving-development
	volunteer-effort
	formal-organizations
	conclusion
	_GoBack
	references
	List of Abbreviations
	Preface
	Introduction
	From UNIX to Technological Utopia
	1.1 Free and Open Source Software
	1.2 Utopian Virtualism

	Software and Knowledge
	2.1 Tools and Design Artifacts in Software Development
	2.2 The Role of Knowledge in Software Development

	Network Shaped Knowledge Distribution
	3.1 Cognitive Networks
	3.2 Actor-Networks

	Practices of a FOSS project
	4.1 Code allocation
	4.2 Knowledge Channeling
	4.3 Debugging
	4.4 Revision Tracking

	Mediation and Resources Inside a FOSS Project
	5.1 Meanings of Mediation
	5.1.1 Composition
	5.1.2 Translation and Delegation
	5.1.3 Black-boxing

	5.2 Resources Driving Development
	5.2.1 Volunteer Effort
	5.2.2 Formal Organizations


	Conclusion
	References
	Index
	Summary

